Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2012, Volume 8, Number 5, Pages 863–873 (Mi nd375)  

This article is cited in 3 scientific papers (total in 3 papers)

Landau–Hopf scenario in the ensemble of interacting oscillators

Alexander P. Kuznetsov, Sergey P. Kuznetsov, Ludmila V. Turukina, I. R. Sataev

Saratov Branch of Kotelnikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov, Russia
Full-text PDF (578 kB) Citations (3)
References:
Abstract: The conditions are discussed for which the ensemble of interacting oscillators may demonstrate Landau–Hopf scenario of successive birth of multi-frequency regimes. A model is proposed in the form of a network of five globally coupled oscillators, characterized by varying degree of excitement of individual oscillators. Illustrations are given for the birth of the tori of increasing dimension by successive quasi-periodic Hopf bifurcation.
Keywords: synchronization, bifurcations, quasi-periodic dynamics, chaos.
Received: 24.09.2012
Revised: 19.10.2012
Document Type: Article
UDC: 517.9
MSC: 39Axx, 93D05
Language: Russian
Citation: Alexander P. Kuznetsov, Sergey P. Kuznetsov, Ludmila V. Turukina, I. R. Sataev, “Landau–Hopf scenario in the ensemble of interacting oscillators”, Nelin. Dinam., 8:5 (2012), 863–873
Citation in format AMSBIB
\Bibitem{KuzKuzTur12}
\by Alexander~P.~Kuznetsov, Sergey~P.~Kuznetsov, Ludmila~V.~Turukina, I.~R.~Sataev
\paper Landau--Hopf scenario in the ensemble of interacting oscillators
\jour Nelin. Dinam.
\yr 2012
\vol 8
\issue 5
\pages 863--873
\mathnet{http://mi.mathnet.ru/nd375}
Linking options:
  • https://www.mathnet.ru/eng/nd375
  • https://www.mathnet.ru/eng/nd/v8/i5/p863
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :153
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024