Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2012, Volume 8, Number 4, Pages 783–797 (Mi nd360)  

This article is cited in 16 scientific papers (total in 16 papers)

Rolling of a rigid body without slipping and spinning: kinematics and dynamics

Alexey V. Borisovabc, Ivan S. Mamaevabc, Dmitrii V. Treschevde

a Institute of Computer Science; Laboratory of nonlinear analysis and the design of new types of vehicles, Udmurt State University Universitetskaya 1, Izhevsk, 426034 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
c Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia
d Steklov Mathematical Institute, Gubkina st. 8, Moscow, 119991, Russia
e Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991, Russia
References:
Abstract: In this paper we investigate various kinematic properties of rolling of one rigid body on another both for the classical model of rolling without slipping (the velocities of bodies at the point of contact coincide) and for the model of rubber-rolling (with the additional condition that the spinning of the bodies relative to each other be excluded). Furthermore, in the case where both bodies are bounded by spherical surfaces and one of them is fixed, the equations of motion for a moving ball are represented in the form of the Chaplygin system. When the center of mass of the moving ball coincides with its geometric center, the equations of motion are represented in conformally Hamiltonian form, and in the case where the radii of the moving and fixed spheres coincides, they are written in Hamiltonian form.
Keywords: rolling without slipping, nonholonomic constraint, Chaplygin system, conformally Hamiltonian system.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
1.1248.2011
НШ-2519.2012.1
14.В37.21.1935
Received: 06.09.2012
Revised: 28.11.2012
English version:
J. Appl. Nonlinear Dyn., 2013, Volume 2, Issue 2, Pages 161–173
DOI: https://doi.org/10.5890/JAND.2013.04.005
Document Type: Article
UDC: 517.925
MSC: 37J60, 37J35
Language: Russian
Citation: Alexey V. Borisov, Ivan S. Mamaev, Dmitrii V. Treschev, “Rolling of a rigid body without slipping and spinning: kinematics and dynamics”, Nelin. Dinam., 8:4 (2012), 783–797; J. Appl. Nonlinear Dyn., 2:2 (2013), 161–173
Citation in format AMSBIB
\Bibitem{BorMamTre12}
\by Alexey~V.~Borisov, Ivan~S.~Mamaev, Dmitrii~V.~Treschev
\paper Rolling of a rigid body without slipping and spinning: kinematics and dynamics
\jour Nelin. Dinam.
\yr 2012
\vol 8
\issue 4
\pages 783--797
\mathnet{http://mi.mathnet.ru/nd360}
\transl
\jour J. Appl. Nonlinear Dyn.
\yr 2013
\vol 2
\issue 2
\pages 161--173
\crossref{https://doi.org/10.5890/JAND.2013.04.005}
Linking options:
  • https://www.mathnet.ru/eng/nd360
  • https://www.mathnet.ru/eng/nd/v8/i4/p783
    This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:1109
    Full-text PDF :752
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024