Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2010, Volume 6, Number 3, Pages 639–652 (Mi nd29)  

This article is cited in 1 scientific paper (total in 1 paper)

New variables of separation for particular case of the Kowalewski top

A. V. Tsiganov

Saint-Petersburg State University
Full-text PDF (232 kB) Citations (1)
References:
Abstract: We discuss the polynomial bi-Hamiltonian structures for the Kowalewski top in special case of zero square integral. An explicit procedure to find variables of separation and separation relations is considered in detail.
Keywords: Kowalewski top, separation of variables, bi-Hamiltonian geometry, differential geometry, algebraic curves.
Received: 28.01.2010
Document Type: Article
MSC: 70H20, 70H06, 37K10
Language: Russian
Citation: A. V. Tsiganov, “New variables of separation for particular case of the Kowalewski top”, Nelin. Dinam., 6:3 (2010), 639–652
Citation in format AMSBIB
\Bibitem{Tsi10}
\by A.~V.~Tsiganov
\paper New variables of separation for particular case of the Kowalewski top
\jour Nelin. Dinam.
\yr 2010
\vol 6
\issue 3
\pages 639--652
\mathnet{http://mi.mathnet.ru/nd29}
Linking options:
  • https://www.mathnet.ru/eng/nd29
  • https://www.mathnet.ru/eng/nd/v6/i3/p639
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024