Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2010, Volume 6, Number 3, Pages 521–530 (Mi nd22)  

Dynamic advection

A. V. Borisovab, I. S. Mamaevab, S. M. Ramodanovab

a Udmurt State University
b Institute of Computer Science
References:
Abstract: A new concept of dynamic advection is introduced. The model of dynamic advection deals with the motion of massive particles in a 2D flow of an ideal incompressible liquid. Unlike the standard advection problem, which is widely treated in the modern literature, our equations of motion account not only for particles' kinematics, governed by the Euler equations, but also for their dynamics (which is obviously neglected if the mass of particles is taken to be zero). A few simple model problems are considered.
Keywords: advection, mixing, point vortex, coarse-grained impurities, bifurcation complex.
Received: 04.12.2009
Bibliographic databases:
Document Type: Article
UDC: 521
Language: Russian
Citation: A. V. Borisov, I. S. Mamaev, S. M. Ramodanov, “Dynamic advection”, Nelin. Dinam., 6:3 (2010), 521–530
Citation in format AMSBIB
\Bibitem{BorMamRam10}
\by A.~V.~Borisov, I.~S.~Mamaev, S.~M.~Ramodanov
\paper Dynamic advection
\jour Nelin. Dinam.
\yr 2010
\vol 6
\issue 3
\pages 521--530
\mathnet{http://mi.mathnet.ru/nd22}
\elib{https://elibrary.ru/item.asp?id=15223025}
Linking options:
  • https://www.mathnet.ru/eng/nd22
  • https://www.mathnet.ru/eng/nd/v6/i3/p521
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025