Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2006, Volume 2, Number 3, Pages 307–331 (Mi nd172)  

This article is cited in 7 scientific papers (total in 7 papers)

Transition to a synchronous chaos regime in a system of coupled non-autonomous oscillators presented in terms of amplitude equations

P. V. Kuptsov, S. P. Kuznetsova

a Saratov Branch of Institute of Radio-engineering and Electronics, Russian Academy of Sciences
Abstract: Amplitude equations are obtained for a system of two coupled van der Pol oscillators that has been recently suggested as a simple system with hyperbolic chaotic attractor allowing physical realization. We demonstrate that an approximate model based on the amplitude equations preserves basic features of a hyperbolic dynamics of the initial system. For two coupled amplitude equations models having the hyperbolic attractors a transition to synchronous chaos is studied. Phenomena typically accompanying this transition, as riddling and bubbling, are shown to manifest themselves in a specific way and can be observed only in a small vicinity of a critical point. Also, a structure of many-dimensional attractor of the system is described in a region below the synchronization point.
Keywords: hyperbolic chaos, strange Smale-Williams attractor, chaotic synchronization, amplitude equations.
Document Type: Article
UDC: 517.9
MSC: 37D45
Language: Russian
Citation: P. V. Kuptsov, S. P. Kuznetsov, “Transition to a synchronous chaos regime in a system of coupled non-autonomous oscillators presented in terms of amplitude equations”, Nelin. Dinam., 2:3 (2006), 307–331
Citation in format AMSBIB
\Bibitem{KupKuz06}
\by P.~V.~Kuptsov, S.~P.~Kuznetsov
\paper Transition to a synchronous chaos regime in a system of coupled non-autonomous oscillators presented in terms of amplitude equations
\jour Nelin. Dinam.
\yr 2006
\vol 2
\issue 3
\pages 307--331
\mathnet{http://mi.mathnet.ru/nd172}
Linking options:
  • https://www.mathnet.ru/eng/nd172
  • https://www.mathnet.ru/eng/nd/v2/i3/p307
  • This publication is cited in the following 7 articles:
    1. O. B. Isaeva, D. O. Lyubchenko, “Sravnitelnyi analiz skhem skrytoi kommunikatsii, osnovannykh na generatorakh so strannym attraktorom giperbolicheskogo tipa i so strannym nekhaoticheskim attraktorom”, Izvestiya vuzov. PND, 32:1 (2024), 31–41  mathnet  crossref
    2. Nadezhda I. Semenova, Elena V. Rybalova, Galina I. Strelkova, Vadim S. Anishchenko, ““Coherence–incoherence” Transition in Ensembles of Nonlocally Coupled Chaotic Oscillators with Nonhyperbolic and Hyperbolic Attractors”, Regul. Chaotic Dyn., 22:2 (2017), 148–162  mathnet  crossref
    3. Isaeva O.B., Jalnine A.Yu., Kuznetsov S.P., “Chaotic Communication With Robust Hyperbolic Transmitter and Receiver”, 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), IEEE, 2017, 3129–3136  crossref  isi
    4. S. P. Kuznetsov, “Dynamical chaos and uniformly hyperbolic attractors: from mathematics to physics”, Phys. Usp., 54:2 (2011), 119–144  mathnet  crossref  crossref  adsnasa  isi  elib
    5. Kuznetsov S.P., Tyuryukina L.V., “Attraktory tipa Smeila-Vilyamsa v modelnykh sistemakh s impulsnym periodicheskim vozdeistviem”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 18:5 (2010), 80–92  zmath  elib
    6. Tyuryukina L.V., Pikovskii A.S., “Giperbolicheskii khaos v nelineino svyazannykh ostsillyatorakh Landau-Styuarta s medlennoi modulyatsiei parametrov”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 17:2 (2009), 99–113  elib
    7. Kuznetsov S.P., “On the feasibility of a parametric generator of hyperbolic chaos”, Journal of Experimental and Theoretical Physics, 106:2 (2008), 380–387  crossref  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:449
    Full-text PDF :129
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025