Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2007, Volume 3, Number 1, Pages 75–80 (Mi nd125)  

A criterion for a Poisson matrix determinant to be a partial integral of the Hamiltonian system

D. B. Zotev

Volzhsk Branch of Moscow Power Engineering Institute
Abstract: Consider a Hamiltonian system, restricted onto an invariant surface. Does it have an integral, which may be explicitly expressed through the equations, determining this submanifold? A simple criterion of the existence of partial integral, equal to their Poisson matrix determinant, has been found. This integral is not trivial iff the induced Poisson structure is nondegenerate at least at one point. Particularly, the submanifold is to be even-dimensional.
Keywords: Hamiltonian system, partial integral, invariant submanifold.
Document Type: Article
UDC: 514.763.337
MSC: 37J15, 37K05
Language: Russian
Citation: D. B. Zotev, “A criterion for a Poisson matrix determinant to be a partial integral of the Hamiltonian system”, Nelin. Dinam., 3:1 (2007), 75–80
Citation in format AMSBIB
\Bibitem{Zot07}
\by D.~B.~Zotev
\paper A criterion for a Poisson matrix determinant to be a partial integral of the Hamiltonian system
\jour Nelin. Dinam.
\yr 2007
\vol 3
\issue 1
\pages 75--80
\mathnet{http://mi.mathnet.ru/nd125}
Linking options:
  • https://www.mathnet.ru/eng/nd125
  • https://www.mathnet.ru/eng/nd/v3/i1/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :89
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024