Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2015, Volume 6, Issue 1, Pages 46–56
DOI: https://doi.org/10.17586/2220-8054-2015-6-1-46-56
(Mi nano918)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon

Konstantin Pankrashkin

Laboratoire de mathématique, Université Paris-Sud, Bâtiment 425, 91405 Orsay Cedex, France
Abstract: Let $\Omega\subset\mathbb{R}^2$ be the exterior of a convex polygon whose side lengths are $\ell_1,\dots,\ell_M$. For a real constant $\alpha$, let $H_\alpha^\Omega$ denote the Laplacian in $\Omega$, $u\mapsto -\Delta u$, with the Robin boundary conditions $\partial u/\partial\nu=\alpha u$ at $\partial\Omega$, where $\nu$ is the outer unit normal. We show that, for any fixed $m\in\mathbb{N}$, the $m$th eigenvalue $E_m^\Omega(\alpha)$ of $H_\alpha^\Omega$ behaves as $E_m^\Omega(\alpha)=-\alpha^2+\mu_m^D+\mathcal{O}(\alpha^{-1/2})$ as $\alpha\to+\infty$ where $\mu_m^D$ stands for the $m$th eigenvalue of the operator $D_1\oplus\cdots\oplus D_M$ and $D_n$ denotes the one-dimensional Laplacian $f\mapsto -f''$ on $(0,\ell_n)$ with the Dirichlet boundary conditions.
Keywords: eigenvalue asymptotics, Laplacian, Robin boundary condition, Dirichlet boundary condition.
Funding agency Grant number
Agence Nationale de la Recherche 2011 BS01019 01
Centre National de la Recherche Scientifique 2279
The work was partially supported by ANR NOSEVOL (ANR 2011 BS01019 01) and GDR Dynamique quantique (GDR CNRS 2279 DYNQUA).
Received: 05.11.2014
Bibliographic databases:
Document Type: Article
PACS: 41.20.Cv, 02.30.Jr, 02.30.Tb
Language: English
Citation: Konstantin Pankrashkin, “On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon”, Nanosystems: Physics, Chemistry, Mathematics, 6:1 (2015), 46–56
Citation in format AMSBIB
\Bibitem{Pan15}
\by Konstantin~Pankrashkin
\paper On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2015
\vol 6
\issue 1
\pages 46--56
\mathnet{http://mi.mathnet.ru/nano918}
\crossref{https://doi.org/10.17586/2220-8054-2015-6-1-46-56}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000219890800002}
\elib{https://elibrary.ru/item.asp?id=23028268}
Linking options:
  • https://www.mathnet.ru/eng/nano918
  • https://www.mathnet.ru/eng/nano/v6/i1/p46
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024