Abstract:
Let Ω⊂R2 be the exterior of a convex polygon whose side lengths are ℓ1,…,ℓM. For a real constant α, let HΩα denote the Laplacian in Ω, u↦−Δu, with the Robin boundary conditions
∂u/∂ν=αu at ∂Ω, where ν is the outer unit normal. We show that, for any fixed m∈N, the mth eigenvalue EΩm(α) of HΩα behaves as EΩm(α)=−α2+μDm+O(α−1/2) as α→+∞ where μDm stands for the mth eigenvalue of the operator
D1⊕⋯⊕DM and Dn denotes the one-dimensional Laplacian f↦−f″ on (0,ℓn) with the Dirichlet boundary conditions.
Keywords:
eigenvalue asymptotics, Laplacian, Robin boundary condition, Dirichlet boundary condition.
The work was partially supported by ANR NOSEVOL (ANR 2011 BS01019 01) and GDR Dynamique quantique (GDR CNRS 2279 DYNQUA).
Received: 05.11.2014
Bibliographic databases:
Document Type:
Article
PACS:41.20.Cv, 02.30.Jr, 02.30.Tb
Language: English
Citation:
Konstantin Pankrashkin, “On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon”, Nanosystems: Physics, Chemistry, Mathematics, 6:1 (2015), 46–56
\Bibitem{Pan15}
\by Konstantin~Pankrashkin
\paper On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2015
\vol 6
\issue 1
\pages 46--56
\mathnet{http://mi.mathnet.ru/nano918}
\crossref{https://doi.org/10.17586/2220-8054-2015-6-1-46-56}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000219890800002}
\elib{https://elibrary.ru/item.asp?id=23028268}
Linking options:
https://www.mathnet.ru/eng/nano918
https://www.mathnet.ru/eng/nano/v6/i1/p46
This publication is cited in the following 4 articles:
S. A. Nazarov, “Parasitic eigenvalues of spectral problems for the Laplacian with third-type boundary conditions”, Comput. Math. Math. Phys., 63:7 (2023), 1237–1253
Nicolas Popoff, Spectral Theory and Mathematical Physics, 2020, 229
Magda Khalile, Konstantin Pankrashkin, “Eigenvalues of Robin Laplacians in infinite sectors”, Mathematische Nachrichten, 291:5-6 (2018), 928
Konstantin Pankrashkin, Nicolas Popoff, “An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter”, Journal de Mathématiques Pures et Appliquées, 106:4 (2016), 615