|
PHYSICS
Normal state pair nematicity and hidden magnetic order and metal-insulator (fermion-boson)-crossover origin of pseudogap phase of cuprates II
B. Abdullaeva, D. B. Abdullaeva, C.-H. Parkb, M. M. Musakhanovc a Institute of Applied Physics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
b Research Center for Dielectric and Advanced Matter Physics, Department of Physics, Pusan National University,
30 Jangjeondong, Geumjeonggu, Busan 609735, Korea
c National University of Uzbekistan, Tashkent 100174, Uzbekistan
Abstract:
In the present paper II, we will gain an understanding of the nematicity, insulating ground state (IGS), nematicity to stripe phase transition, Fermi pockets evolution, and resistivity temperature upturn, as to be metal-insulator (fermion-boson)-crossover (MIC) phenomena for the pseudogap (PG) region of cuprates. While in the paper I [Abdullaev B., et al. arXiv:cond-mat/0703290], we obtained an understanding of the observed heat conductivity downturn, anomalous Lorentz ratio, insulator resistivity boundary, nonlinear entropy as manifestations of the same MIC. The recently observed nematicity and hidden magnetic order are related to the PG pair intra charge and spin fluctuations. We will try to obtain an answer to the question; why ground state of YBCO is Fermi liquid oscillating and of Bi-2212 is insulating? We will also clarify the physics of the recently observed MIC results of Lalibert et al. [arXiv:1606.04491] and explain the long-discussed transition of the electric charge density from doping to doping+1 dependence at the critical doping. We predict that at the upturns this density should have the temperature dependences $n\sim T^3n_2$ for $T\to0$, where $n_2$ is density for dopings close to the critical value. We understood that the upturns before and after the first critical doping have the same nature. We will find understanding of all above mentioned phenomena within PG pair physics.
Keywords:
high critical temperature superconductivity, cuprate, metal-insulator-crossover, temperature-doping phase diagram, resistivity temperature upturn, insulating ground state, nematicity and stripe phases, Fermi pockets evolution.
Received: 02.08.2016 Revised: 06.08.2016
Citation:
B. Abdullaev, D. B. Abdullaev, C.-H. Park, M. M. Musakhanov, “Normal state pair nematicity and hidden magnetic order and metal-insulator (fermion-boson)-crossover origin of pseudogap phase of cuprates II”, Nanosystems: Physics, Chemistry, Mathematics, 8:1 (2017), 59–70
Linking options:
https://www.mathnet.ru/eng/nano9 https://www.mathnet.ru/eng/nano/v8/i1/p59
|
Statistics & downloads: |
Abstract page: | 43 | Full-text PDF : | 39 |
|