Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2018, Volume 9, Issue 5, Pages 609–613
DOI: https://doi.org/10.17586/2220-8054-2018-9-5-609-613
(Mi nano350)
 

This article is cited in 3 scientific papers (total in 3 papers)

PHYSICS

Near-field optical microscopy of surface plasmon polaritons excited by silicon nanoantenna

I. S. Sinev, F. E. Komissarenko, I. S. Mukhin, M. I. Petrov, I. V. Iorsh, P. A. Belov, A. K. Samusev

St. Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverkskiy, 49, St. Petersburg, 197101, Russia
Abstract: An optical nanoantenna is a device that transforms far-field electromagnetic radiation into near-field and vice versa. Naturally, it can serve as a conduit between free space light and localized optical modes, including surface waves. With the recent rise of all-dielectric nanophotonics, nanoantennas made of high-index materials were found to offer unparalleled means for manipulation of light due to presence of equally strong electric and magnetic responses in the visible spectral range. Here, we demonstrate excitation of surface plasmon polaritons by single silicon nanosphere on gold layer measured by means of scanning near-field optical microscopy. The interference patterns observed in the measured near-field maps allow us to retrieve information on directivity and relative excitation efficiency of surface plasmon polariton in the longer wavelength part of the visible spectral range. Our results demonstrate that all-dielectric nanoantennas could prove to be a valuable tool for controlling directivity and efficiency of excitation of surface waves.
Keywords: near-field optical microscopy, silicon nanoparticles, all-dielectric nanoantennas, surface plasmon polaritons.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation RFMEFI58417X0024
This work was supported by the Ministry of Education and Science of the Russian Federation (project No 14.584.21.0024 with unique identificator RFMEFI58417X0024).
Received: 13.09.2018
Bibliographic databases:
Document Type: Article
PACS: 42.25.Fx, 71.45.Gm, 07.79.Fc
Language: English
Citation: I. S. Sinev, F. E. Komissarenko, I. S. Mukhin, M. I. Petrov, I. V. Iorsh, P. A. Belov, A. K. Samusev, “Near-field optical microscopy of surface plasmon polaritons excited by silicon nanoantenna”, Nanosystems: Physics, Chemistry, Mathematics, 9:5 (2018), 609–613
Citation in format AMSBIB
\Bibitem{SinKomMuk18}
\by I.~S.~Sinev, F.~E.~Komissarenko, I.~S.~Mukhin, M.~I.~Petrov, I.~V.~Iorsh, P.~A.~Belov, A.~K.~Samusev
\paper Near-field optical microscopy of surface plasmon polaritons excited by silicon nanoantenna
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2018
\vol 9
\issue 5
\pages 609--613
\mathnet{http://mi.mathnet.ru/nano350}
\crossref{https://doi.org/10.17586/2220-8054-2018-9-5-609-613}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454046400005}
\elib{https://elibrary.ru/item.asp?id=36414502}
Linking options:
  • https://www.mathnet.ru/eng/nano350
  • https://www.mathnet.ru/eng/nano/v9/i5/p609
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024