Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2016, Volume 7, Issue 5, Pages 803–815
DOI: https://doi.org/10.17586/2220-8054-2016-7-5-803-815
(Mi nano286)
 

This article is cited in 7 scientific papers (total in 7 papers)

Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive $\delta$-impurities symmetrically situated around the origin II

S. Albeverioabc, S. Fassaribd, F. Rinaldidb

a Institut für Angewandte Mathematik, HCM, IZKS, BiBoS, Universität Bonn, Endenicheralee 60, D53115 Bonn, Germany
b CERFIM, PO Box 1132, CH6601 Locarno, Switzerland
c Chair Professorship, Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, KSA
d Università degli Studi Guglielmo Marconi, Via Plinio 44, I00193 Rome, Italy
Abstract: In this note, we continue our analysis (started in [1]) of the isotropic three-dimensional harmonic oscillator perturbed by a pair of identical attractive point interactions symmetrically situated with respect to the origin, that is to say, the mathematical model describing a symmetric quantum dot with a pair of point impurities. In particular, by making the coupling constant (to be renormalized) dependent also upon the separation distance between the two impurities, we prove that it is possible to rigorously define the unique self-adjoint Hamiltonian that, differently from the one introduced in [1], behaves smoothly as the separation distance between the impurities shrinks to zero. In fact, we rigorously prove that the Hamiltonian introduced in this note converges in the norm-resolvent sense to that of the isotropic three-dimensional harmonic oscillator perturbed by a single attractive point interaction situated at the origin having double strength, thus making this three- dimensional model more similar to its one-dimensional analog (not requiring the renormalization procedure) as well as to the three-dimensional model involving impurities given by potentials whose range may even be physically very short but different from zero. Moreover, we show the manifestation of the Zeldovich effect, known also as level rearrangement, in the model investigated herewith. More precisely, we take advantage of our renormalization procedure to demonstrate the possibility of using the concept of “Zeldovich spiral”, introduced in the case of perturbations given by rapidly decaying potentials, also in the case of point perturbations.
Keywords: level crossing, degeneracy, point interactions, renormalisation, Schrödinger operators, quantum dots, perturbed quantum oscillators, Zeldovich effect, level rearrangement.
Received: 27.06.2016
Revised: 25.07.2016
Bibliographic databases:
Document Type: Article
PACS: 02.30.Gp, 02.30.Hq, 02.30.Hq, 02.30.Lt, 02.30.Sa, 02.30.Tb, 03.65.Db, 03.65.Ge, 68.65.Hb
Language: English
Citation: S. Albeverio, S. Fassari, F. Rinaldi, “Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive $\delta$-impurities symmetrically situated around the origin II”, Nanosystems: Physics, Chemistry, Mathematics, 7:5 (2016), 803–815
Citation in format AMSBIB
\Bibitem{AlbFasRin16}
\by S.~Albeverio, S.~Fassari, F.~Rinaldi
\paper Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive $\delta$-impurities symmetrically situated around the origin II
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2016
\vol 7
\issue 5
\pages 803--815
\mathnet{http://mi.mathnet.ru/nano286}
\crossref{https://doi.org/10.17586/2220-8054-2016-7-5-803-815}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000387463700003}
Linking options:
  • https://www.mathnet.ru/eng/nano286
  • https://www.mathnet.ru/eng/nano/v7/i5/p803
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:43
    Full-text PDF :22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024