|
This article is cited in 5 scientific papers (total in 5 papers)
MATHEMATICS
On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations
H. Neidhardta, A. Stephanb, V. A. Zagrebnovc a WIAS Berlin, Mohrenstr. 39, D10117 Berlin, Germany
b Humboldt Universität zu Berlin, Institut für Mathematik
Unter den Linden 6, D10099 Berlin, Germany
c Université d'Aix-Marseille and Institut de Mathématiques de Marseille (I2M) UMR 7373, CMI – Technopôle Château-Gombert, 13453 Marseille, France
Abstract:
We improve some recent estimates of the rate of convergence for product approximations of solution operators for linear non-autonomous Cauchy problem. The Trotter product formula approximation is proved to converge to the solution operator in the operator-norm. We estimate the rate of convergence of this approximation. The result is applied to diffusion equation perturbed by a time-dependent potential.
Keywords:
Evolution equations, non-autonomous Cauchy problem, solution operators (propagators), Trotter product approximation, operator-norm convergence, convergence rate, operator splitting.
Received: 19.01.2017 Revised: 29.01.2017
Citation:
H. Neidhardt, A. Stephan, V. A. Zagrebnov, “On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations”, Nanosystems: Physics, Chemistry, Mathematics, 8:2 (2017), 202–215
Linking options:
https://www.mathnet.ru/eng/nano26 https://www.mathnet.ru/eng/nano/v8/i2/p202
|
Statistics & downloads: |
Abstract page: | 75 | Full-text PDF : | 32 |
|