Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2016, Volume 7, Issue 2, Pages 315–323
DOI: https://doi.org/10.17586/2220-8054-2016-7-2-315-323
(Mi nano204)
 

This article is cited in 3 scientific papers (total in 3 papers)

INVITED SPEAKERS

Laplacians with singular perturbations supported on hypersurfaces

A. Mantilea, A. Posilicanob

a Laboratoire de Mathématiques de Reims, EA4535 URCA, Fédération de Recherche ARC Mathématiques, FR 3399 CNRS, France
b DiSAT, Sezione di Matematica, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy
Full-text PDF (253 kB) Citations (3)
Abstract: We review the main results of our recent work on singular perturbations supported on bounded hypersurfaces. Our approach consists in using the theory of self-adjoint extensions of restrictions to build self-adjoint realizations of the $n$-dimensional Laplacian with linear boundary conditions on (a relatively open part of) a compact hypersurface. This allows one to obtain Krein-like resolvent formulae where the reference operator coincides with the free self-adjoint Laplacian in $\mathbb{R}^n$, providing in this way with an useful tool for the scattering problem from a hypersurface. As examples of this construction, we consider the cases of Dirichlet and Neumann boundary conditions assigned on an unclosed hypersurface.
Keywords: Krein's resolvent formula, boundary conditions, self-adjoint extensions.
Received: 02.03.2016
Bibliographic databases:
Document Type: Article
PACS: 02.30.Tb, 02.30.Jr
Language: English
Citation: A. Mantile, A. Posilicano, “Laplacians with singular perturbations supported on hypersurfaces”, Nanosystems: Physics, Chemistry, Mathematics, 7:2 (2016), 315–323
Citation in format AMSBIB
\Bibitem{ManPos16}
\by A.~Mantile, A.~Posilicano
\paper Laplacians with singular perturbations supported on hypersurfaces
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2016
\vol 7
\issue 2
\pages 315--323
\mathnet{http://mi.mathnet.ru/nano204}
\crossref{https://doi.org/10.17586/2220-8054-2016-7-2-315-323}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000387463100004}
Linking options:
  • https://www.mathnet.ru/eng/nano204
  • https://www.mathnet.ru/eng/nano/v7/i2/p315
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024