Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2024, Volume 15, Issue 3, Pages 398–409
DOI: https://doi.org/10.17586/2220-8054-2024-15-3-398-409
(Mi nano1283)
 

CHEMISTRY AND MATERIAL SCIENCE

Synthesis and study of nickel sulfide nanoparticles and nanostructures for energy storage device applications

Mahesh M. Kamblea, Bharat R. Badeb, Avinash V. Rokadeb, Vaishali S. Wamanc, Sachin V. Bangaled, Sandesh R. Jadkarb

a PDEA’S Anantrao Pawar College, Pirangut, Mulshi, Pune 412115 India
b Department of Physics, Savitribai Phule Pune University, Pune 411007 India
c P. E.S. Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411005 India
d Chemical Research Lab, UG and PG Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111 India
Abstract: Nickel sulfide (NiS) nanostructures were synthesized by simple and low-cost hot injection method (HIM). The effects of sulfur concentration on the compositional, morphological, optical and structural properties of NiS nanoparticles were investigated in detail. The X-ray diffraction pattern confirms the formation of NiS nanoparticles without any impurities. The Raman spectra show the presence of NiS active modes in the synthesized material prepared at different sulphur concentration. The electrochemical performance of the synthesized NiS powder was estimated through cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy in KOH electrolyte. The specific capacitance (CS) of the NiS powder electrode was measured with the three-electrode method, and it confirms the maximum CS of 315.8 F/g at a scan rate of 5 mVs$^{-1}$. The calculated value of energy density and power density of the NiS powder electrode is 3.324 WhKg$^{-1}$ and 199 WKg$^{-1}$ respectively at a lower current density. Present study provides a simple and low-cost HIM is capable for controlling the structural, optical, and morphological properties of nickel sulfide series, which would be of great potential for the synthesis of other metal sulfides.
Keywords: nickel sulfide, nanoparticles, nanostructures, electrochemical measurements, supercapacitor, hot injection method.
Received: 14.08.2023
Revised: 15.01.2024
Accepted: 12.05.2024
Document Type: Article
Language: English
Citation: Mahesh M. Kamble, Bharat R. Bade, Avinash V. Rokade, Vaishali S. Waman, Sachin V. Bangale, Sandesh R. Jadkar, “Synthesis and study of nickel sulfide nanoparticles and nanostructures for energy storage device applications”, Nanosystems: Physics, Chemistry, Mathematics, 15:3 (2024), 398–409
Citation in format AMSBIB
\Bibitem{KamBadRok24}
\by Mahesh~M.~Kamble, Bharat~R.~Bade, Avinash~V.~Rokade, Vaishali~S.~Waman, Sachin~V.~Bangale, Sandesh~R.~Jadkar
\paper Synthesis and study of nickel sulfide nanoparticles and nanostructures for energy storage device applications
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2024
\vol 15
\issue 3
\pages 398--409
\mathnet{http://mi.mathnet.ru/nano1283}
\crossref{https://doi.org/10.17586/2220-8054-2024-15-3-398-409}
Linking options:
  • https://www.mathnet.ru/eng/nano1283
  • https://www.mathnet.ru/eng/nano/v15/i3/p398
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:44
    Full-text PDF :10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024