Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2023, Volume 14, Issue 2, Pages 151–157
DOI: https://doi.org/10.17586/2220-8054-2023-14-2-151-157
(Mi nano1174)
 

MATHEMATICS

Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation

Tulkin H. Rasulov, Bekzod I. Bahronov

Bukhara State University, Bukhara, Uzbekistan
Abstract: In the paper we consider a tensor sum $H_{\mu,\lambda}$, $\mu,\lambda>0$ of two Friedrichs models $h_{\mu,\lambda}$ with rank two perturbation. The Hamiltonian $H_{\mu,\lambda}$ is associated with a system of three quantum particles on one-dimensional lattice. We investigate the number and location of the eigenvalues of $H_{\mu,\lambda}$. The existence of eigenvalues located respectively inside, in the gap, and below the bottom of the essential spectrum of $H_{\mu,\lambda}$ is proved.
Keywords: tensor sum, Hamiltonian, lattice, quantum particles, non-local interaction, Friedrichs model, eigenvalue, perturbation.
Received: 16.01.2023
Revised: 18.03.2023
Accepted: 19.03.2023
Bibliographic databases:
Document Type: Article
Language: English
Citation: Tulkin H. Rasulov, Bekzod I. Bahronov, “Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation”, Nanosystems: Physics, Chemistry, Mathematics, 14:2 (2023), 151–157
Citation in format AMSBIB
\Bibitem{RasBah23}
\by Tulkin~H.~Rasulov, Bekzod~I.~Bahronov
\paper Existence of the eigenvalues of a tensor sum of the Friedrichs models with rank 2 perturbation
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2023
\vol 14
\issue 2
\pages 151--157
\mathnet{http://mi.mathnet.ru/nano1174}
\crossref{https://doi.org/10.17586/2220-8054-2023-14-2-151-157}
\elib{https://elibrary.ru/item.asp?id=51852258}
Linking options:
  • https://www.mathnet.ru/eng/nano1174
  • https://www.mathnet.ru/eng/nano/v14/i2/p151
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:47
    Full-text PDF :10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024