Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2017, Volume 8, Issue 6, Pages 809–815
DOI: https://doi.org/10.17586/2220-8054-2017-8-6-809-815
(Mi nano107)
 

This article is cited in 10 scientific papers (total in 10 papers)

CHEMISTRY AND MATERIAL SCIENCE

Fractal analysis – a surrogate technique for material characterization

M. S. Swapna, S. Sankararaman

Department of Optoelectronics and Department of Nanoscience and Nanotechnology, University of Kerala, Trivandrum, Kerala, 695581, India
Abstract: Fractal analysis has emerged as a potential analytical tool in almost all branches of science and technology. The paper is the first report of using fractal dimension as a surrogate technique for estimating particle size. A regression equation is set connecting the soot particle size and fractal dimension, after investigating the Field Emission Scanning Electron Microscopic (FESEM) images of carbonaceous soot from five different sources. Since the fractal dimension is an invariant property under the scale transformation, an ordinary photograph of the soot should also yield the same fractal dimension. This enables one to determine the average size of the soot particles, using the regression equation, by calculating the fractal dimension from the photograph. Hence, instead of frequent measurement of average particle size from FESEM, this technique of estimating the particle size from the fractal dimension of the soot photograph, is found to be a potentially cost-effective and non-contact method.
Keywords: fractals, FESEM, carbon nanoparticles, particle size, box-counting.
Received: 16.10.2017
Revised: 26.10.2017
Bibliographic databases:
Document Type: Article
PACS: 81.05 U, 05.45.Df, 61.48.De, 81.20.Ka
Language: English
Citation: M. S. Swapna, S. Sankararaman, “Fractal analysis – a surrogate technique for material characterization”, Nanosystems: Physics, Chemistry, Mathematics, 8:6 (2017), 809–815
Citation in format AMSBIB
\Bibitem{SwaSan17}
\by M.~S.~Swapna, S.~Sankararaman
\paper Fractal analysis -- a surrogate technique for material characterization
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2017
\vol 8
\issue 6
\pages 809--815
\mathnet{http://mi.mathnet.ru/nano107}
\crossref{https://doi.org/10.17586/2220-8054-2017-8-6-809-815}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000419787600015}
Linking options:
  • https://www.mathnet.ru/eng/nano107
  • https://www.mathnet.ru/eng/nano/v8/i6/p809
  • This publication is cited in the following 10 articles:
    1. Ammini Renjini, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman, “Graph features based classification of bronchial and pleural rub sound signals: the potential of complex network unwrapped”, Phys Eng Sci Med, 2024  crossref
    2. S. Sankararaman, “Power spectral fractalysis: a surrogate method for laser-induced plasma temperature analysis”, Eur. Phys. J. Spec. Top., 230:21-22 (2021), 3881  crossref
    3. S Sankararaman, Ernesto Estrada, “Unveiling the potential of phase portrait-based recurrence network: a revelation through lung sound analysis”, Journal of Complex Networks, 10:1 (2021)  crossref
    4. M. S. Swapna, S. Sreejyothi, Vimal Raj, S. Sankararaman, “Is SARS CoV-2 a Multifractal?—Unveiling the Fractality and Fractal Structure”, Braz J Phys, 51:3 (2021), 731  crossref
    5. M S Swapna, S Sankararaman, “The efflorescent carbon allotropes: fractality preserved blooming through alkali treatment and exfoliation”, Nano Ex., 1:2 (2020), 020010  crossref
    6. A. Renjini, Vimal Raj, M. S. Swapna, S. Sreejyothi, S. Sankararaman, “Phase portrait for high fidelity feature extraction and classification: A surrogate approach”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30:11 (2020)  crossref
    7. M S Swapna, H V Saritha Devi, G Ambadas, S Sankararaman, “Tunable fluorescence from natural carbon source: Pandanus”, Pramana - J Phys, 92:5 (2019)  crossref
    8. Igor Olenych, Yurii Olenych, Andriy Kostruba, Yaroslav Pryima, 2019 XIth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT), 2019, 97  crossref
    9. Vimal Raj, M. S. Swapna, S. Soumya, S. Sankararaman, “Fractal study on Saraswati supercluster”, Indian J Phys, 93:11 (2019), 1385  crossref
    10. M. S. Swapna, V. P. N. Nampoori, S. Sankararaman, “Photoacoustics: a nondestructive evaluation technique for thermal and optical characterisation of metal mirrors”, J Opt, 47:3 (2018), 405  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025