Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2021, Volume 12, Issue 6, Pages 657–663
DOI: https://doi.org/10.17586/2220-8054-2021-12-6-657-663
(Mi nano1062)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice

J. I. Abdullaevab, A. M. Khalkhuzhaevab, L. S. Usmonovb

a Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek 81, Tashkent 100170, Uzbekistan
b Samarkand State University, University Boulevard 15, Samarkand 140104, Uzbekistan
Full-text PDF (276 kB) Citations (2)
Abstract: We consider the two-particle Schrödinger operator $H(\mathbf{k})$, ($\mathbf{k}\in\mathbf{T^3}\equiv(-\pi,\pi]^3$) is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice $\mathbf{Z}^3$. It is proved that the number $N(\mathbf{k})\equiv N(k^{(1)},k^{(2)},k^{(3)})$ of eigenvalues below the essential spectrum of the operator $H(\mathbf{k})$ is nondecreasing function in each $k^{(i)}\in[0,\pi]$, $i=1,2,3$. Under some additional conditions potential $\hat{v}$, the monotonicity of each eigenvalue $z_n(\mathbf{k})\equiv z_n(k^{(1)},k^{(2)},k^{(3)})$ of the operator $H(\mathbf{k})$ in $k^{(i)}\in[0,\pi]$ with other coordinates $\mathbf{k}$ being fixed is proved.
Keywords: two-particle Schrödinger operator, Birman–Schwinger principle, total quasimomentum, monotonicity of the eigenvalues.
Received: 22.10.2021
Revised: 20.11.2021
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. I. Abdullaev, A. M. Khalkhuzhaev, L. S. Usmonov, “Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice”, Nanosystems: Physics, Chemistry, Mathematics, 12:6 (2021), 657–663
Citation in format AMSBIB
\Bibitem{AbdKhaUsm21}
\by J.~I.~Abdullaev, A.~M.~Khalkhuzhaev, L.~S.~Usmonov
\paper Monotonicity of the eigenvalues of the two-particle Schr\"odinger operatoron a lattice
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2021
\vol 12
\issue 6
\pages 657--663
\mathnet{http://mi.mathnet.ru/nano1062}
\crossref{https://doi.org/10.17586/2220-8054-2021-12-6-657-663}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000752998100001}
\elib{https://elibrary.ru/item.asp?id=47578530}
Linking options:
  • https://www.mathnet.ru/eng/nano1062
  • https://www.mathnet.ru/eng/nano/v12/i6/p657
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024