|
This article is cited in 2 scientific papers (total in 2 papers)
MATHEMATICS
Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice
J. I. Abdullaevab, A. M. Khalkhuzhaevab, L. S. Usmonovb a Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, Mirzo Ulugbek 81, Tashkent 100170, Uzbekistan
b Samarkand State University, University Boulevard 15, Samarkand 140104, Uzbekistan
Abstract:
We consider the two-particle Schrödinger operator $H(\mathbf{k})$, ($\mathbf{k}\in\mathbf{T^3}\equiv(-\pi,\pi]^3$) is the total quasimomentum of a system of two particles) corresponding to the Hamiltonian of the two-particle system on the three-dimensional lattice $\mathbf{Z}^3$. It is proved that the number $N(\mathbf{k})\equiv N(k^{(1)},k^{(2)},k^{(3)})$ of eigenvalues below the essential spectrum of the operator $H(\mathbf{k})$ is nondecreasing function in each $k^{(i)}\in[0,\pi]$, $i=1,2,3$. Under some additional conditions potential $\hat{v}$, the monotonicity of each eigenvalue $z_n(\mathbf{k})\equiv z_n(k^{(1)},k^{(2)},k^{(3)})$ of the operator $H(\mathbf{k})$ in $k^{(i)}\in[0,\pi]$ with other coordinates $\mathbf{k}$ being fixed is proved.
Keywords:
two-particle Schrödinger operator, Birman–Schwinger principle, total quasimomentum, monotonicity of the eigenvalues.
Received: 22.10.2021 Revised: 20.11.2021
Citation:
J. I. Abdullaev, A. M. Khalkhuzhaev, L. S. Usmonov, “Monotonicity of the eigenvalues of the two-particle Schrödinger operatoron a lattice”, Nanosystems: Physics, Chemistry, Mathematics, 12:6 (2021), 657–663
Linking options:
https://www.mathnet.ru/eng/nano1062 https://www.mathnet.ru/eng/nano/v12/i6/p657
|
Statistics & downloads: |
Abstract page: | 93 | Full-text PDF : | 53 |
|