Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2017, Volume 8, Issue 6, Pages 787–792
DOI: https://doi.org/10.17586/2220-8054-2017-8-6-787-792
(Mi nano103)
 

This article is cited in 1 scientific paper (total in 1 paper)

CHEMISTRY AND MATERIAL SCIENCE

Synthetic pathway of a Cu$_2$ZnSnS$_4$ powder using low temperature annealing of nanostructured binary sulfides

N. S. Kozhevnikovaa, A. S. Vorokha, O. I. Gyrdasovaa, I. V. Baklanovabc, A. N. Titova, M. V. Kuznetsova

a Institute of Solid State Chemistry of Ural Branch of Russian Academy of Sciences, 620990, Pervomayskaya str. 91, Ekaterinburg, Russian Federation
b Ural Federal University, 620002, Mira str. 19, Ekaterinburg, Russian Federation
c Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620108, S. Kovalevskaya str.18, Ekaterinburg, Russian Federation
Full-text PDF (559 kB) Citations (1)
Abstract: Cost-effective route to quaternary Cu$_2$ZnSnS$_4$ nanostructured powder fabrication was developed by utilizing a two-step approach. In the first stage, nanostructured binary sulfides Cu$_2$S, ZnS, and SnS were synthesized by chemical bath deposition. In the second stage, ternary sulfide Cu$_2$ZnSnS$_4$ was obtained by low-temperature annealing of binary sulfides' mixtures at 70 and 300$^\circ$ C. The compounds obtained on both stages were investigated by X-ray diffraction, scanning electron microscopy, optical absorbance and Raman spectroscopy. On the basis of our findings, we established that Cu$_2$ZnSnS$_4$ phase has already formed at 300$^\circ$ C. The synthetic pathway revealed in this work allows reducing the temperature of Cu$_2$ZnSnS$_4$ synthesis and as a result, offers the possibility of reducing the manufacturing costs.
Keywords: nanopowder, CZTS, metal sulfides, low temperature annealing.
Funding agency Grant number
Russian Foundation for Basic Research 16-03-00566
Ural Branch of the Russian Academy of Sciences 15-20-3-11
This work was supported by the Russian Foundation for Basic Research (grant № 16-03-00566), UrB RAS (grant № 15-20-3-11).
Received: 23.11.2017
Revised: 27.11.2017
Bibliographic databases:
Document Type: Article
PACS: 81.05.Hd, 81.07.Bc, 81.16.Be, 81.10.Jt
Language: English
Citation: N. S. Kozhevnikova, A. S. Vorokh, O. I. Gyrdasova, I. V. Baklanova, A. N. Titov, M. V. Kuznetsov, “Synthetic pathway of a Cu$_2$ZnSnS$_4$ powder using low temperature annealing of nanostructured binary sulfides”, Nanosystems: Physics, Chemistry, Mathematics, 8:6 (2017), 787–792
Citation in format AMSBIB
\Bibitem{KozVorGyr17}
\by N.~S.~Kozhevnikova, A.~S.~Vorokh, O.~I.~Gyrdasova, I.~V.~Baklanova, A.~N.~Titov, M.~V.~Kuznetsov
\paper Synthetic pathway of a Cu$_2$ZnSnS$_4$ powder using low temperature annealing of nanostructured binary sulfides
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2017
\vol 8
\issue 6
\pages 787--792
\mathnet{http://mi.mathnet.ru/nano103}
\crossref{https://doi.org/10.17586/2220-8054-2017-8-6-787-792}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000419787600011}
Linking options:
  • https://www.mathnet.ru/eng/nano103
  • https://www.mathnet.ru/eng/nano/v8/i6/p787
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:43
    Full-text PDF :32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024