Abstract:
For the class Cε={f∈C2π:En[f]⩽εn,n⩽Z+}, where
{εn}n∈Z+ is a sequence of numbers tending monotonically to zero,
we establish the following precise (in the sense of order) bounds for the error of approximation
by de la Vallée–Poussin sums:
c12(n+l)∑j=nεjl+j−n+1⩽supf∈Cε||f−Vn,l(f)||C⩽c22(n+l)∑j=nεjl+j−n+1(n∈N),\eqno(1)
where c1 and c2 are constants which do not depend on n or l.
This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory
(Bonn, 1976) and permits a unified treatment of many earlier results obtained only for
special classes Cε of (differentiable) functions. The result (1) substantially refines the estimate (see [1])
||Vn,l(f)−f||C=O(logn/(l+1)+1)En[f](n→∞)\eqno(2)
and includes as particular cases the estimates of approximations by Fejér sums (see [2])
and by Fourier sums (see [3]).
\Bibitem{Dah78}
\by W.~Dahmen
\paper Best approximation and de la Vall\'ee--Poussin sums
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 5
\pages 671--683
\mathnet{http://mi.mathnet.ru/mzm9996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=481843}
\zmath{https://zbmath.org/?q=an:0404.42004|0385.42001}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 5
\pages 369--376
\crossref{https://doi.org/10.1007/BF01789003}
Linking options:
https://www.mathnet.ru/eng/mzm9996
https://www.mathnet.ru/eng/mzm/v23/i5/p671
This publication is cited in the following 3 articles:
G. A. Akishev, “Ob otsenkakh priblizheniya funktsii iz simmetrichnogo prostranstva summami Fure v ravnomernoi metrike”, Tr. IMM UrO RAN, 30, no. 4, 2024, 9–26
I. V. Boikov, G. Yu. Salimov, “Primenenie polinomov Bernshteina k podavleniyu effekta Gibbsa (obzor literatury)”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 4, 88–105
L. K. Dodunova, A. A. Ageikin, “Approximation of analytic functions by universal Vallee-Poussin sums on the Chebyshev polynomials”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 24 (2018), 12–23