|
This article is cited in 2 scientific papers (total in 2 papers)
Best approximation and de la Vallée–Poussin sums
W. Dahmen Mathematisches Institut der Universit\"at Bonn
Abstract:
For the class $C_\varepsilon=\{f\in C_{2\pi}: E_n[f]\leqslant\varepsilon_n, n\leqslant\mathbf{Z}_+\}$, where
$\{\varepsilon_n\}_{n\in\mathbf{Z}_+}$ is a sequence of numbers tending monotonically to zero,
we establish the following precise (in the sense of order) bounds for the error of approximation
by de la Vallée–Poussin sums:
$$
c_1\sum_{j=n}^{2(n+l)}\frac{\varepsilon_j}{l+j-n+1}\leqslant\sup_{f\in C_\varepsilon}||f-V_{n,l}(f)||_C
\leqslant c_2\sum_{j=n}^{2(n+l)}\frac{\varepsilon_j}{l+j-n+1}\qquad(n\in\mathrm{N}),\eqno{(1)}
$$
where $c_1$ and $c_2$ are constants which do not depend on $n$ or $l$.
This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory
(Bonn, 1976) and permits a unified treatment of many earlier results obtained only for
special classes $C_\varepsilon$ of (differentiable) functions. The result (1) substantially refines the estimate (see [1])
$$
||V_{n,l}(f)-f||_C=O(\log n/(l+1)+1)E_n[f]\qquad(n\to\infty)\eqno{(2)}
$$
and includes as particular cases the estimates of approximations by Fejér sums (see [2])
and by Fourier sums (see [3]).
Received: 22.02.1977
Citation:
W. Dahmen, “Best approximation and de la Vallée–Poussin sums”, Mat. Zametki, 23:5 (1978), 671–683; Math. Notes, 23:5 (1978), 369–376
Linking options:
https://www.mathnet.ru/eng/mzm9996 https://www.mathnet.ru/eng/mzm/v23/i5/p671
|
Statistics & downloads: |
Abstract page: | 238 | Full-text PDF : | 103 | First page: | 1 |
|