Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1978, Volume 23, Issue 5, Pages 671–683 (Mi mzm9996)  

This article is cited in 3 scientific papers (total in 3 papers)

Best approximation and de la Vallée–Poussin sums

W. Dahmen

Mathematisches Institut der Universit\"at Bonn
Abstract: For the class Cε={fC2π:En[f]εn,nZ+}, where {εn}nZ+ is a sequence of numbers tending monotonically to zero, we establish the following precise (in the sense of order) bounds for the error of approximation by de la Vallée–Poussin sums:
c12(n+l)j=nεjl+jn+1supfCε||fVn,l(f)||Cc22(n+l)j=nεjl+jn+1(nN),\eqno(1)
where c1 and c2 are constants which do not depend on n or l. This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory (Bonn, 1976) and permits a unified treatment of many earlier results obtained only for special classes Cε of (differentiable) functions. The result (1) substantially refines the estimate (see [1])
||Vn,l(f)f||C=O(logn/(l+1)+1)En[f](n)\eqno(2)
and includes as particular cases the estimates of approximations by Fejér sums (see [2]) and by Fourier sums (see [3]).
Received: 22.02.1977
English version:
Mathematical Notes, 1978, Volume 23, Issue 5, Pages 369–376
DOI: https://doi.org/10.1007/BF01789003
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: W. Dahmen, “Best approximation and de la Vallée–Poussin sums”, Mat. Zametki, 23:5 (1978), 671–683; Math. Notes, 23:5 (1978), 369–376
Citation in format AMSBIB
\Bibitem{Dah78}
\by W.~Dahmen
\paper Best approximation and de la Vall\'ee--Poussin sums
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 5
\pages 671--683
\mathnet{http://mi.mathnet.ru/mzm9996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=481843}
\zmath{https://zbmath.org/?q=an:0404.42004|0385.42001}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 5
\pages 369--376
\crossref{https://doi.org/10.1007/BF01789003}
Linking options:
  • https://www.mathnet.ru/eng/mzm9996
  • https://www.mathnet.ru/eng/mzm/v23/i5/p671
  • This publication is cited in the following 3 articles:
    1. G. A. Akishev, “Ob otsenkakh priblizheniya funktsii iz simmetrichnogo prostranstva summami Fure v ravnomernoi metrike”, Tr. IMM UrO RAN, 30, no. 4, 2024, 9–26  mathnet  crossref  elib
    2. I. V. Boikov, G. Yu. Salimov, “Primenenie polinomov Bernshteina k podavleniyu effekta Gibbsa (obzor literatury)”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2021, no. 4, 88–105  mathnet  crossref
    3. L. K. Dodunova, A. A. Ageikin, “Approximation of analytic functions by universal Vallee-Poussin sums on the Chebyshev polynomials”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 24 (2018), 12–23  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :112
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025