Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1978, Volume 23, Issue 5, Pages 671–683 (Mi mzm9996)  

This article is cited in 2 scientific papers (total in 2 papers)

Best approximation and de la Vallée–Poussin sums

W. Dahmen

Mathematisches Institut der Universit\"at Bonn
Abstract: For the class $C_\varepsilon=\{f\in C_{2\pi}: E_n[f]\leqslant\varepsilon_n, n\leqslant\mathbf{Z}_+\}$, where $\{\varepsilon_n\}_{n\in\mathbf{Z}_+}$ is a sequence of numbers tending monotonically to zero, we establish the following precise (in the sense of order) bounds for the error of approximation by de la Vallée–Poussin sums:
$$ c_1\sum_{j=n}^{2(n+l)}\frac{\varepsilon_j}{l+j-n+1}\leqslant\sup_{f\in C_\varepsilon}||f-V_{n,l}(f)||_C \leqslant c_2\sum_{j=n}^{2(n+l)}\frac{\varepsilon_j}{l+j-n+1}\qquad(n\in\mathrm{N}),\eqno{(1)} $$
where $c_1$ and $c_2$ are constants which do not depend on $n$ or $l$. This solves the problem posed by S. B. Stechkin at the Conference on Approximation Theory (Bonn, 1976) and permits a unified treatment of many earlier results obtained only for special classes $C_\varepsilon$ of (differentiable) functions. The result (1) substantially refines the estimate (see [1])
$$ ||V_{n,l}(f)-f||_C=O(\log n/(l+1)+1)E_n[f]\qquad(n\to\infty)\eqno{(2)} $$
and includes as particular cases the estimates of approximations by Fejér sums (see [2]) and by Fourier sums (see [3]).
Received: 22.02.1977
English version:
Mathematical Notes, 1978, Volume 23, Issue 5, Pages 369–376
DOI: https://doi.org/10.1007/BF01789003
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: W. Dahmen, “Best approximation and de la Vallée–Poussin sums”, Mat. Zametki, 23:5 (1978), 671–683; Math. Notes, 23:5 (1978), 369–376
Citation in format AMSBIB
\Bibitem{Dah78}
\by W.~Dahmen
\paper Best approximation and de la Vall\'ee--Poussin sums
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 5
\pages 671--683
\mathnet{http://mi.mathnet.ru/mzm9996}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=481843}
\zmath{https://zbmath.org/?q=an:0404.42004|0385.42001}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 5
\pages 369--376
\crossref{https://doi.org/10.1007/BF01789003}
Linking options:
  • https://www.mathnet.ru/eng/mzm9996
  • https://www.mathnet.ru/eng/mzm/v23/i5/p671
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :103
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024