Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1978, Volume 23, Issue 5, Pages 651–657 (Mi mzm9994)  

Finite groups admitting a fixed-point-free 2-automorphism

E. I. Khukhro

Novosibirsk State University
Abstract: It is proved that if a finite group admits a fixed-point-free automorphism of order $2^n$, then its nilpotent length is at most $n$. It had been proved by Gross [1] that its nilpotent length is at most $2n-2$.
Received: 28.04.1977
English version:
Mathematical Notes, 1978, Volume 23, Issue 5, Pages 359–362
DOI: https://doi.org/10.1007/BF01789001
Bibliographic databases:
Document Type: Article
UDC: 519.4
Language: Russian
Citation: E. I. Khukhro, “Finite groups admitting a fixed-point-free 2-automorphism”, Mat. Zametki, 23:5 (1978), 651–657; Math. Notes, 23:5 (1978), 359–362
Citation in format AMSBIB
\Bibitem{Khu78}
\by E.~I.~Khukhro
\paper Finite groups admitting a fixed-point-free 2-automorphism
\jour Mat. Zametki
\yr 1978
\vol 23
\issue 5
\pages 651--657
\mathnet{http://mi.mathnet.ru/mzm9994}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=491943}
\zmath{https://zbmath.org/?q=an:0403.20015|0385.20012}
\transl
\jour Math. Notes
\yr 1978
\vol 23
\issue 5
\pages 359--362
\crossref{https://doi.org/10.1007/BF01789001}
Linking options:
  • https://www.mathnet.ru/eng/mzm9994
  • https://www.mathnet.ru/eng/mzm/v23/i5/p651
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024