|
This article is cited in 1 scientific paper (total in 1 paper)
Exactness of a nontrivial estimate in a cyclic inequality
E. K. Godunova, V. I. Levin Moscow State Pedagogical Institute
Abstract:
It is proved that the inequality [1]
$$
\frac1n\sum_{i=1}^n\frac{\nu_1a_{i+1}+\nu_2a_{i+2}+\nu_3a_{i+3}}{\delta_2a_{i+2}+\delta_3a_{i+3}}\geqslant\psi(0),
$$
where $n\geqslant3$, $\nu_1, \nu_2, \nu_3\geqslant0$, $\delta_2, \delta_3>0$,
and $\psi(t)$ is the convex lower support of the function $\widetilde{\psi}(t)$ defined in [1], is exact.
Received: 16.12.1974
Citation:
E. K. Godunova, V. I. Levin, “Exactness of a nontrivial estimate in a cyclic inequality”, Mat. Zametki, 20:2 (1976), 203–205; Math. Notes, 20:2 (1976), 673–675
Linking options:
https://www.mathnet.ru/eng/mzm9982 https://www.mathnet.ru/eng/mzm/v20/i2/p203
|
Statistics & downloads: |
Abstract page: | 162 | Full-text PDF : | 82 | First page: | 1 |
|