Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1976, Volume 20, Issue 2, Pages 177–186 (Mi mzm9979)  

This article is cited in 2 scientific papers (total in 2 papers)

Finite groups with Frobenius subgroup

A. V. Romanovskii

Gomel State University
Abstract: Suppose the normalizer $N$ of a subgroup $A$ of a simple group $G$ is a Frobenius group with kernel $A$, and the intersection of $A$ with any other conjugate subgroup of $G$ is trivial, and suppose, if $A$ is elementary Abelian, that $|A|>2n+1$, where $n=|N:A|$. It is proved that if $A$ has a complement $B$ in $G$, then $G$ acts doubly transitively on the set of right cosets of $G$ modulo $B$, the subgroup $B$ is maximal in $G$, and $|B|$ is divisible by $|A|-1$. The proof makes essential use of the coherence of a certain set of irreducible characters of $N$.
Received: 15.10.1975
English version:
Mathematical Notes, 1976, Volume 20, Issue 2, Pages 660–665
DOI: https://doi.org/10.1007/BF01155869
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: Russian
Citation: A. V. Romanovskii, “Finite groups with Frobenius subgroup”, Mat. Zametki, 20:2 (1976), 177–186; Math. Notes, 20:2 (1976), 660–665
Citation in format AMSBIB
\Bibitem{Rom76}
\by A.~V.~Romanovskii
\paper Finite groups with Frobenius subgroup
\jour Mat. Zametki
\yr 1976
\vol 20
\issue 2
\pages 177--186
\mathnet{http://mi.mathnet.ru/mzm9979}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=435208}
\zmath{https://zbmath.org/?q=an:0341.20011}
\transl
\jour Math. Notes
\yr 1976
\vol 20
\issue 2
\pages 660--665
\crossref{https://doi.org/10.1007/BF01155869}
Linking options:
  • https://www.mathnet.ru/eng/mzm9979
  • https://www.mathnet.ru/eng/mzm/v20/i2/p177
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:134
    Full-text PDF :65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024