Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 4, Pages 601–607 (Mi mzm9975)  

Criteria for stability of the point spectrum under completely continuous perturbations

L. N. Nikol'skaya

Leningrad Polytechnic Institute
Abstract: We show that a number $\lambda$ is an eigenvalue of the operator $T+C$ for an arbitrary compact perturbation $C$ if and only if the operator $T-\lambda I$ is semi-Fredholm and $\mathrm{ind}\,(T-\lambda I)>0$.
Received: 17.10.1974
English version:
Mathematical Notes, 1975, Volume 18, Issue 4, Pages 946–949
DOI: https://doi.org/10.1007/BF01153050
Bibliographic databases:
Document Type: Article
UDC: 513.88
Language: Russian
Citation: L. N. Nikol'skaya, “Criteria for stability of the point spectrum under completely continuous perturbations”, Mat. Zametki, 18:4 (1975), 601–607; Math. Notes, 18:4 (1975), 946–949
Citation in format AMSBIB
\Bibitem{Nik75}
\by L.~N.~Nikol'skaya
\paper Criteria for stability of the point spectrum under completely continuous perturbations
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 4
\pages 601--607
\mathnet{http://mi.mathnet.ru/mzm9975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=397454}
\zmath{https://zbmath.org/?q=an:0319.47017}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 4
\pages 946--949
\crossref{https://doi.org/10.1007/BF01153050}
Linking options:
  • https://www.mathnet.ru/eng/mzm9975
  • https://www.mathnet.ru/eng/mzm/v18/i4/p601
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:153
    Full-text PDF :66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024