Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 4, Pages 561–568 (Mi mzm9970)  

Some spectral relations

A. A. Stakun

Moscow State University
Abstract: We consider the zeta function of a second-order differential operator which has a second-order turning point:
$$ Lu=\frac{d^2u}{dx^2}+[\lambda^2q(x)+R(x)]u, $$
where $q(x)=x^2q_1(x)$, $q_1(x)\ne0$ and $u(0)=u(1)=0$. We construct an asymptotic series and calculate regularized traces for the eigenvalues of this operator.
Received: 07.12.1973
English version:
Mathematical Notes, 1975, Volume 18, Issue 4, Pages 923–927
DOI: https://doi.org/10.1007/BF01153045
Bibliographic databases:
Document Type: Article
UDC: 517.91
Language: Russian
Citation: A. A. Stakun, “Some spectral relations”, Mat. Zametki, 18:4 (1975), 561–568; Math. Notes, 18:4 (1975), 923–927
Citation in format AMSBIB
\Bibitem{Sta75}
\by A.~A.~Stakun
\paper Some spectral relations
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 4
\pages 561--568
\mathnet{http://mi.mathnet.ru/mzm9970}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=402171}
\zmath{https://zbmath.org/?q=an:0336.34027}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 4
\pages 923--927
\crossref{https://doi.org/10.1007/BF01153045}
Linking options:
  • https://www.mathnet.ru/eng/mzm9970
  • https://www.mathnet.ru/eng/mzm/v18/i4/p561
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:157
    Full-text PDF :69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024