Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 4, Pages 515–526 (Mi mzm9966)  

This article is cited in 9 scientific papers (total in 9 papers)

Lebesgue's inequality in a uniform metric and on a set of full measure

K. I. Oskolkov

V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR
Abstract: Let f be a continuous periodic function with Fourier sums Sn(f), En(f)=En be the best approximation to f by trigonometric polynomials of order n. The following estimate is proved:
||fSn(f)||c2nν=nEννn+1.
(Here c is an absolute constant.) This estimate sharpens Lebesgue's classical inequality for “fast” decreasing Eν. The sharpness of this estimate is proved for an arbitrary class of functions having a given majorant of best approximations. Also investigated is the sharpness of the corresponding estimate for the rate of convergence of a Fourier series almost everywhere.
Received: 13.06.1975
English version:
Mathematical Notes, 1975, Volume 18, Issue 4, Pages 895–902
DOI: https://doi.org/10.1007/BF01153041
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: K. I. Oskolkov, “Lebesgue's inequality in a uniform metric and on a set of full measure”, Mat. Zametki, 18:4 (1975), 515–526; Math. Notes, 18:4 (1975), 895–902
Citation in format AMSBIB
\Bibitem{Osk75}
\by K.~I.~Oskolkov
\paper Lebesgue's inequality in a uniform metric and on a set of full measure
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 4
\pages 515--526
\mathnet{http://mi.mathnet.ru/mzm9966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=412711}
\zmath{https://zbmath.org/?q=an:0339.42001}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 4
\pages 895--902
\crossref{https://doi.org/10.1007/BF01153041}
Linking options:
  • https://www.mathnet.ru/eng/mzm9966
  • https://www.mathnet.ru/eng/mzm/v18/i4/p515
  • This publication is cited in the following 9 articles:
    1. N. V. Laktionova, K. V. Runovskii, “Approximation of Periodic Functions of High Generalized Smoothness by Fourier Sums”, Math. Notes, 115:2 (2024), 275–278  mathnet  crossref  crossref  mathscinet
    2. G. A. Akishev, “Ob otsenkakh priblizheniya funktsii iz simmetrichnogo prostranstva summami Fure v ravnomernoi metrike”, Tr. IMM UrO RAN, 30, no. 4, 2024, 9–26  mathnet  crossref  elib
    3. K. V. Runovskii, “Multiplicator type operators and approximation of periodic functions of one variable by trigonometric polynomials”, Sb. Math., 212:2 (2021), 234–264  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. I. I. Sharapudinov, “Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums”, Sb. Math., 209:9 (2018), 1390–1417  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Viktor I. Kolyada, Springer Proceedings in Mathematics & Statistics, 25, Recent Advances in Harmonic Analysis and Applications, 2012, 27  crossref
    7. Temlyakov V., “Nonlinear Methods of Approximation”, Found. Comput. Math., 3:1 (2003), 33–107  crossref  isi
    8. A. I. Syusyukalov, “On the approximation of functions in the class $C(\varepsilon)$ using means of sequences of Fourier sums”, Russian Math. (Iz. VUZ), 42:5 (1998), 76–78  mathnet  mathscinet
    9. K. I. Oskolkov, “Approximation properties of summable functions on sets of full measure”, Math. USSR-Sb., 32:4 (1977), 489–514  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :148
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025