Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1975, Volume 18, Issue 4, Pages 515–526 (Mi mzm9966)  

This article is cited in 8 scientific papers (total in 8 papers)

Lebesgue's inequality in a uniform metric and on a set of full measure

K. I. Oskolkov

V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR
Abstract: Let $f$ be a continuous periodic function with Fourier sums $S_n(f)$, $E_n(f)=E_n$ be the best approximation to $f$ by trigonometric polynomials of order $n$. The following estimate is proved:
$$ ||f-S_n(f)||\leqslant c\sum_{\nu=n}^{2n}\frac{E_\nu}{\nu-n+1}. $$
(Here $c$ is an absolute constant.) This estimate sharpens Lebesgue's classical inequality for “fast” decreasing $E_\nu$. The sharpness of this estimate is proved for an arbitrary class of functions having a given majorant of best approximations. Also investigated is the sharpness of the corresponding estimate for the rate of convergence of a Fourier series almost everywhere.
Received: 13.06.1975
English version:
Mathematical Notes, 1975, Volume 18, Issue 4, Pages 895–902
DOI: https://doi.org/10.1007/BF01153041
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: K. I. Oskolkov, “Lebesgue's inequality in a uniform metric and on a set of full measure”, Mat. Zametki, 18:4 (1975), 515–526; Math. Notes, 18:4 (1975), 895–902
Citation in format AMSBIB
\Bibitem{Osk75}
\by K.~I.~Oskolkov
\paper Lebesgue's inequality in a uniform metric and on a set of full measure
\jour Mat. Zametki
\yr 1975
\vol 18
\issue 4
\pages 515--526
\mathnet{http://mi.mathnet.ru/mzm9966}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=412711}
\zmath{https://zbmath.org/?q=an:0339.42001}
\transl
\jour Math. Notes
\yr 1975
\vol 18
\issue 4
\pages 895--902
\crossref{https://doi.org/10.1007/BF01153041}
Linking options:
  • https://www.mathnet.ru/eng/mzm9966
  • https://www.mathnet.ru/eng/mzm/v18/i4/p515
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :129
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024