|
This article is cited in 3 scientific papers (total in 4 papers)
Certain numerical characteristics of $KN$-lineals
Yu. A. Abramovich, G. Ya. Lozanovskii
Abstract:
We study the properties of certain numerical characteristics in a normed lattice that characterize its conjugate space.
A typical result is as follows: let $X$ be a $K_\sigma N$-space or a $KB$-lineal. If every
sequence $\{x_n\}\subset X$ of pairwise disjoint positive elements with norms not exceedings 1 we have
$$
\varliminf_{n\to\infty}\frac1n||x_1\vee x_2\vee\dots\vee x_n||=0,
$$
then all the odd conjugate spaces $X^*, X^{***},\dots$ are $KB$-spaces.
Received: 13.09.1971
Citation:
Yu. A. Abramovich, G. Ya. Lozanovskii, “Certain numerical characteristics of $KN$-lineals”, Mat. Zametki, 14:5 (1973), 723–732; Math. Notes, 14:5 (1973), 973–978
Linking options:
https://www.mathnet.ru/eng/mzm9957 https://www.mathnet.ru/eng/mzm/v14/i5/p723
|
Statistics & downloads: |
Abstract page: | 159 | Full-text PDF : | 72 | First page: | 1 |
|