Abstract:
We study the properties of certain numerical characteristics in a normed lattice that characterize its conjugate space.
A typical result is as follows: let X be a KσN-space or a KB-lineal. If every
sequence {xn}⊂X of pairwise disjoint positive elements with norms not exceedings 1 we have
lim––––n→∞1n||x1∨x2∨⋯∨xn||=0,
then all the odd conjugate spaces X∗,X∗∗∗,… are KB-spaces.
This publication is cited in the following 4 articles:
Andreas Defant, Mieczysław Mastyło, “Aspects of the Kahane–Salem–Zygmund inequalities in Banach spaces”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117:1 (2023)
M. Sh. Braverman, A. A. Sedaev, “A characteristic of symmetrical spaces”, Funct. Anal. Appl., 15:2 (1981), 126–128
A. V. Bukhvalov, A. I. Veksler, G. Ya. Lozanovskii, “Banach lattices – some Banach aspects of their theory”, Russian Math. Surveys, 34:2 (1979), 159–212
A. V. Bukhvalov, A. I. Veksler, D. A. Vladimirov, B. Z. Vulikh, L. V. Kantorovich, S. M. Lozinskii, E. M. Semenov, “Grigorii Yakovlevich Lozanovskii (obituary)”, Russian Math. Surveys, 33:1 (1978), 183–188