Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 5, Pages 703–712 (Mi mzm9955)  

This article is cited in 13 scientific papers (total in 13 papers)

Nilpotent shifts on manifolds

I. I. Mel'nik

Saratov State University
Abstract: On the lattice of manifolds of all algebras LL we study the operator of nilpotent closure J:αα+R, where R is a nilpotent manifold of Ω-algebras. With a given system of identities Σ defining α, we construct a system Σ, giving the manifold α+R. It is proved that if α does not contain R, then the lattice of submanifolds of α+R is the double of the lattice of submanifolds of α. We describe the free and subdirect indecomposable manifolds of algebras α+R. Let Bα+R and A be a dense retract of B. We denote by θ(B) the lattice of congruences on B. The theorem is proved: θ(B) is a complemented lattice if and only if θ(A) is a complemented lattice.
Received: 12.07.1972
English version:
Mathematical Notes, 1973, Volume 14, Issue 5, Pages 962–966
DOI: https://doi.org/10.1007/BF01462258
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: I. I. Mel'nik, “Nilpotent shifts on manifolds”, Mat. Zametki, 14:5 (1973), 703–712; Math. Notes, 14:5 (1973), 962–966
Citation in format AMSBIB
\Bibitem{Mel73}
\by I.~I.~Mel'nik
\paper Nilpotent shifts on manifolds
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 5
\pages 703--712
\mathnet{http://mi.mathnet.ru/mzm9955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=366782}
\zmath{https://zbmath.org/?q=an:0285.08002}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 5
\pages 962--966
\crossref{https://doi.org/10.1007/BF01462258}
Linking options:
  • https://www.mathnet.ru/eng/mzm9955
  • https://www.mathnet.ru/eng/mzm/v14/i5/p703
  • This publication is cited in the following 13 articles:
    1. Diana Davidova, Yuri Movsisyan, “A set-theoretical representation for weakly idempotent lattices and interlaced weakly idempotent bilattices”, European Journal of Mathematics, 2:3 (2016), 853  crossref
    2. Davidova D.S. Movsisyan Yu.M., “Hyperidentities of Weakly Idempotent Lattices”, J. Contemp. Math. Anal.-Armen. Aca., 50:6 (2015), 259–264  crossref  isi
    3. Movsisyan Yu., Davidova D., “a Complete Characterization of Hyperidentities of the Variety of Weakly Idempotent Lattices”, Tenth International Conference on Computer Science and Information Technologies Revised Selected Papers Csit-2015, ed. Shoukourian S., IEEE, 2015, 41–43  mathscinet  isi
    4. Yuri Movsisyan, Diana Davidova, 2015 Computer Science and Information Technologies (CSIT), 2015, 41  crossref
    5. Tomasz Kowalski, Francesco Paoli, Matthew Spinks, “Quasi-subtractive varieties”, J. symb. log., 76:4 (2011), 1261  crossref
    6. C. Massé, H. Wang, S. L. Wismath, “Minimal Characteristic Algebras for Leftmost k-Normal Identities”, Algebra Colloq., 17:01 (2010), 27  crossref
    7. Adam W. Marczak, Jerzy Płonka, “On Nilpotent Extensions of Algebras”, Algebra Colloq., 14:04 (2007), 593  crossref
    8. Ivan Chajda, Klaus Denecke, Shelly L. Wismath, “A Characterization of P-Compatible Varieties”, Algebra Colloq., 14:02 (2007), 191  crossref
    9. Ivan Chajda, Helmut Länger, “A note on normal varieties of monounary algebras”, Czechoslovak Mathematical Journal, 52:2 (2002), 369  crossref
    10. I. CHAJDA, R. HALAŠ, A. G. PINUS, I. G. ROSENBERG, “DUALITY OF NORMALLY PRESENTED VARIETIES”, Int. J. Algebra Comput., 10:05 (2000), 651  crossref
    11. I. Chajda, R. Halaš, A. G. Pinus, “Algebraic duality of constant algebras”, Czechoslovak Mathematical Journal, 49:2 (1999), 415  crossref
    12. Ewa Graczyńska, “On normal and regular identities”, Algebra Universalis, 27:3 (1990), 387  crossref
    13. Stephen D. Comer, “The Decision Problem for Certain Nilpotent Closed Varieties”, Mathematical Logic Qtrly, 27:31-35 (1981), 557  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:153
    Full-text PDF :71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025