Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1973, Volume 14, Issue 5, Pages 615–626 (Mi mzm9946)  

This article is cited in 19 scientific papers (total in 19 papers)

Points of strong summability of Fourier series

O. D. Gabisoniya

Sukhumskii Pedagogic Institute
Abstract: In this paper we present a new solution of Hardy and Littlewood's problem concerning strong summability of Fourier series; we also present a property of points of strong summability.
Received: 11.09.1972
English version:
Mathematical Notes, 1973, Volume 14, Issue 5, Pages 913–918
DOI: https://doi.org/10.1007/BF01462249
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: O. D. Gabisoniya, “Points of strong summability of Fourier series”, Mat. Zametki, 14:5 (1973), 615–626; Math. Notes, 14:5 (1973), 913–918
Citation in format AMSBIB
\Bibitem{Gab73}
\by O.~D.~Gabisoniya
\paper Points of strong summability of Fourier series
\jour Mat. Zametki
\yr 1973
\vol 14
\issue 5
\pages 615--626
\mathnet{http://mi.mathnet.ru/mzm9946}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=330893}
\zmath{https://zbmath.org/?q=an:0293.42003}
\transl
\jour Math. Notes
\yr 1973
\vol 14
\issue 5
\pages 913--918
\crossref{https://doi.org/10.1007/BF01462249}
Linking options:
  • https://www.mathnet.ru/eng/mzm9946
  • https://www.mathnet.ru/eng/mzm/v14/i5/p615
  • This publication is cited in the following 19 articles:
    1. Bobby Wilson, “Maximal estimates for strong arithmetic means of Fourier series”, Advanced Nonlinear Studies, 2025  crossref
    2. Roald Trigub, “Relation between Fourier series and Wiener algebras”, UMB, 18:1 (2021), 80  crossref
    3. Goginava U., “Almost Everywhere Strong C,1,0 Summability of 2-Dimensional Trigonometric Fourier Series”, Indian J. Pure Appl. Math., 51:3 (2020), 1181–1194  crossref  isi
    4. U. Goginava, G. Karagulian, “On Exponential Summability of Rectangular Partial Sums of Double Trigonometric Fourier Series”, Math. Notes, 104:5 (2018), 655–665  mathnet  crossref  crossref  mathscinet  isi  elib
    5. Goginava U., “Almost Everywhere Convergence of Strong Norlund Logarithmic Means of Walsh-Fourier Series”, J. Contemp. Math. Anal.-Armen. Aca., 53:5 (2018), 281–287  crossref  mathscinet  zmath  isi  scopus
    6. Weisz F., “Convergence and Summability of Fourier Transforms and Hardy Spaces”, Convergence and Summability of Fourier Transforms and Hardy Spaces, Applied and Numerical Harmonic Analysis, Birkhauser Boston, 2017, 1–435  crossref  isi
    7. Goginava U., “Almost Everywhere Strong Summability of Cubic Partial Sums of D-Dimensional Walsh-Fourier Series”, Math. Inequal. Appl., 20:4 (2017), 1051–1066  crossref  isi
    8. Ferenc Weisz, “Multi-dimensional Fourier Transforms, Lebesgue Points and Strong Summability”, Mediterr. J. Math., 13:5 (2016), 3557  crossref
    9. Gat G., Goginava U., “Almost Everywhere Strong Summability of Double Walsh-Fourier Series”, J. Contemp. Math. Anal.-Armen. Aca., 50:1 (2015), 1–13  crossref  isi
    10. Lenski W. Szal B., “Pointwise Strong Approximation of Almost Periodic Functions in S-1”, Math. Inequal. Appl., 18:2 (2015), 735–750  crossref  isi
    11. Ferenc Weisz, “Lebesgue Points of Two-Dimensional Fourier Transforms and Strong Summability”, J Fourier Anal Appl, 21:4 (2015), 885  crossref
    12. Sándor Fridli, Ferenc Schipp, Atlantis Studies in Mathematics for Engineering and Science, 12, Dyadic Walsh Analysis from 1924 Onwards Walsh-Gibbs-Butzer Dyadic Differentiation in Science Volume 1 Foundations, 2015, 209  crossref
    13. Gat G., Goginava U., Karagulyan G., “Almost Everywhere Strong Summability of Marcinkiewicz Means of Double Walsh-Fourier Series”, Anal. Math., 40:4 (2014), 243–266  crossref  isi
    14. Goginava U., Gogoladze L., Karagulyan G., “Bmo-Estimation and Almost Everywhere Exponential Summability of Quadratic Partial Sums of Double Fourier Series”, Constr. Approx., 40:1 (2014), 105–120  crossref  isi
    15. R. A. Lasuriya, “φ-Strong Summability of Fourier–Laplace Series of Functions of Class L(Sm1)”, Math. Notes, 87:1 (2010), 138–140  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    16. V. A. Rodin, “Strong means and oscillation of multiple Fourier series in multiplicative systems”, Math. Notes, 63:4 (1998), 533–541  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    17. V. A. Rodin, “Strong means and the oscillation of multiple Fourier–Walsh series”, Math. Notes, 56:3 (1994), 948–959  mathnet  crossref  mathscinet  zmath  isi
    18. V. A. Rodin, “Extensions of a Certain Weak Type Operator”, Funct. Anal. Appl., 27:1 (1993), 70–73  mathnet  crossref  mathscinet  zmath  isi
    19. M. I. Dyachenko, “Some problems in the theory of multiple trigonometric series”, Russian Math. Surveys, 47:5 (1992), 103–171  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :93
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025