|
The absence of bases from certain separable linear topological spaces
V. P. Kondakov Rostov State University
Abstract:
We give examples of separable linear topological spaces without Shauder-type bases. We prove that every linear set $X$ of dimension $\aleph_0< \dim X\leqslant2^2\aleph_0$ can be provided with a separable locally convex topology for which there is no Shauder-type basis.
Received: 23.02.1971
Citation:
V. P. Kondakov, “The absence of bases from certain separable linear topological spaces”, Mat. Zametki, 12:5 (1972), 583–589; Math. Notes, 12:5 (1972), 787–790
Linking options:
https://www.mathnet.ru/eng/mzm9920 https://www.mathnet.ru/eng/mzm/v12/i5/p583
|
Statistics & downloads: |
Abstract page: | 175 | Full-text PDF : | 69 | First page: | 1 |
|