Abstract:
We construct continuous functions for which the modulus of p-continuity tends to zero with given order in Wiener's sense
Vp(δ;f)=sup∑i|f(xi)−f(xi−1)|p(p>1)
(the upper bound is taken over partitions satisfying the condition xi−xi−1⩽).
Citation:
A. P. Terekhin, “Functions of bounded p-variation with given order of modulus of p-continuity”, Mat. Zametki, 12:5 (1972), 523–530; Math. Notes, 12:5 (1972), 751–755
\Bibitem{Ter72}
\by A.~P.~Terekhin
\paper Functions of bounded $p$-variation with given order of modulus of $p$-continuity
\jour Mat. Zametki
\yr 1972
\vol 12
\issue 5
\pages 523--530
\mathnet{http://mi.mathnet.ru/mzm9912}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=318416}
\zmath{https://zbmath.org/?q=an:0242.26002}
\transl
\jour Math. Notes
\yr 1972
\vol 12
\issue 5
\pages 751--755
\crossref{https://doi.org/10.1007/BF01099058}
Linking options:
https://www.mathnet.ru/eng/mzm9912
https://www.mathnet.ru/eng/mzm/v12/i5/p523
This publication is cited in the following 4 articles:
Nikolaj Mormul`, Alexander Shchitov, “A study of approximation of functions of bounded variation by Faber-Schauder partial sums”, EEJET, 4:4 (100) (2019), 14
Sorina Barza, Pilar Silvestre, “Functions of bounded second p p -variation”, Rev Mat Complut, 27:1 (2014), 69
S. S. Volosivets, “Approximation of functions of bounded p-variation by polynomials in terms of the Faber–Schauder system”, Math. Notes, 62:3 (1997), 306–313
S. S. Volosivets, “Approximation of functions of bounded p-variation by means of polynomials of the Haar and Walsh systems”, Math. Notes, 53:6 (1993), 569–575