Abstract:
A computational scheme of collocation type is proposed for a singular
linear integral equation with a power singularity in the regular integral
and the justification is given. The results obtained are used to justify
the approximate solution of the singular integral equation
K(x)≡a(t)x(t)+b(t)πi∫|τ|=1x(τ)dττ−t+12πi∫|τ|=1h(t,τ)x(τ)|τ−t|δdτ=f(t)
by a modification of the method of minimal residuals.
Citation:
I. V. Boikov, “The approximate solution of singular integral equations”, Mat. Zametki, 12:2 (1972), 177–186; Math. Notes, 12:2 (1972), 541–546
I. V. Boikov, Yu. F. Zakharova, “Priblizhennye metody resheniya singulyarnykh i gipersingulyarnykh integrodifferentsialnykh uravnenii”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2012, no. 3, 99–113
I. V. Boikov, I. I. Zhechev, “Approximate solution of singular integrodifferential equations on closed contours of integration”, J Math Sci, 41:3 (1988), 1003