Abstract:
A relation is established between inclusion theorems and the uniform convergence of Fourier series for the case of functions of many variables. The one-dimensional case has already been analyzed by Ul'yanov.
\Bibitem{Tem72}
\by N.~Temirgaliev
\paper A connection between inclusion theorems and the uniform convergence of multiple Fourier series
\jour Mat. Zametki
\yr 1972
\vol 12
\issue 2
\pages 139--148
\mathnet{http://mi.mathnet.ru/mzm9860}
\zmath{https://zbmath.org/?q=an:0246.42015}
\transl
\jour Math. Notes
\yr 1972
\vol 12
\issue 2
\pages 518--523
\crossref{https://doi.org/10.1007/BF01095009}
Linking options:
https://www.mathnet.ru/eng/mzm9860
https://www.mathnet.ru/eng/mzm/v12/i2/p139
This publication is cited in the following 8 articles:
N. A. Ilyasov, “Mnogomernaya versiya neravenstva tipa Turana i ego prilozhenie k otsenke ravnomernykh modulei gladkosti periodicheskikh funktsii”, Tr. IMM UrO RAN, 25, no. 2, 2019, 102–115
N. A. Ilyasov, “O poryadke ravnomernoi skhodimosti chastnykh kubicheskikh summ kratnykh trigonometricheskikh ryadov Fure na klassakh funktsii $H_{1,m}^{l}[\omega]$”, Tr. IMM UrO RAN, 21, no. 4, 2015, 161–177
A. Dymov, “Nonequilibrium statistical mechanics of Hamiltonian rotators with alternated spins”, J. Stat. Phys., 158:4 (2015), 968–1006
N. A. Il'yasov, “On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$”, Math. Notes, 78:4 (2005), 481–497
A. M. Stokolos, “Differentiation of integrals by bases without the density property”, Sb. Math., 187:7 (1996), 1061–1085
V. I. Kolyada, “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117
V. I. Kolyada, “On the essential continuity of summable functions”, Math. USSR-Sb., 36:3 (1980), 301–322
V. I. Kolyada, “On embedding in classes of continuous functions of several variables”, Math. USSR-Sb., 28:3 (1976), 377–388