Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2000, Volume 68, Issue 5, Pages 643–647
DOI: https://doi.org/10.4213/mzm985
(Mi mzm985)
 

This article is cited in 14 scientific papers (total in 14 papers)

On the Spectrum of Cartesian Powers of Classical Automorphisms

O. N. Ageev

N. E. Bauman Moscow State Technical University
References:
Abstract: We prove the following statement: the set of all essential spectral multiplicities of $T^{(n)}=T\times\dots\times T$($n$ times) is $\{n,n(n-1),\dots,n!\}$ on $\{\operatorname{const}\}^\perp$ for Chacon transformations $T$, or, equivalently, the operator $T^{(n)}$ has a simple spectrum on the subspace $C_{\operatorname{sim}}$ of all functions that are invariant with respect to permutations of the coordinates. As an immediate consequence of this fact, we have the disjointness of all convolution powers of the spectral measure for Chacon transformations. If $n=2$, then $T\times T$ has a homogeneous spectrum of multiplicity 2 on $\{\operatorname{const}\}^\perp$, i.e., this is a solution of Rokhlin"s problem for Chacon transformations. Similar statements are considered for other classical automorphisms.
Received: 31.01.2000
English version:
Mathematical Notes, 2000, Volume 68, Issue 5, Pages 547–551
DOI: https://doi.org/10.1023/A:1026698921311
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: O. N. Ageev, “On the Spectrum of Cartesian Powers of Classical Automorphisms”, Mat. Zametki, 68:5 (2000), 643–647; Math. Notes, 68:5 (2000), 547–551
Citation in format AMSBIB
\Bibitem{Age00}
\by O.~N.~Ageev
\paper On the Spectrum of Cartesian Powers of Classical Automorphisms
\jour Mat. Zametki
\yr 2000
\vol 68
\issue 5
\pages 643--647
\mathnet{http://mi.mathnet.ru/mzm985}
\crossref{https://doi.org/10.4213/mzm985}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1835446}
\zmath{https://zbmath.org/?q=an:1042.37003}
\transl
\jour Math. Notes
\yr 2000
\vol 68
\issue 5
\pages 547--551
\crossref{https://doi.org/10.1023/A:1026698921311}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000166684000001}
Linking options:
  • https://www.mathnet.ru/eng/mzm985
  • https://doi.org/10.4213/mzm985
  • https://www.mathnet.ru/eng/mzm/v68/i5/p643
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :199
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024