Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1972, Volume 11, Issue 6, Pages 677–686 (Mi mzm9836)  

Generalized classical quotient rings

V. P. Elizarov
Abstract: We find necessary and sufficient conditions for a generalized classical quotient ring to be a principal ideal ring, a local ring, or a completely primary ring. As corollaries, the corresponding results are obtained for classical quotient rings.
Received: 09.03.1971
English version:
Mathematical Notes, 1972, Volume 11, Issue 6, Pages 412–416
DOI: https://doi.org/10.1007/BF01093728
Bibliographic databases:
Document Type: Article
UDC: 519.4
Language: Russian
Citation: V. P. Elizarov, “Generalized classical quotient rings”, Mat. Zametki, 11:6 (1972), 677–686; Math. Notes, 11:6 (1972), 412–416
Citation in format AMSBIB
\Bibitem{Eli72}
\by V.~P.~Elizarov
\paper Generalized classical quotient rings
\jour Mat. Zametki
\yr 1972
\vol 11
\issue 6
\pages 677--686
\mathnet{http://mi.mathnet.ru/mzm9836}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=299623}
\zmath{https://zbmath.org/?q=an:0263.16002}
\transl
\jour Math. Notes
\yr 1972
\vol 11
\issue 6
\pages 412--416
\crossref{https://doi.org/10.1007/BF01093728}
Linking options:
  • https://www.mathnet.ru/eng/mzm9836
  • https://www.mathnet.ru/eng/mzm/v11/i6/p677
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024