Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1972, Volume 11, Issue 6, Pages 645–650 (Mi mzm9832)  

On algebraic differential equations with knotted trajectories

Kh. Ganiev

Research Institute of Applied Mathematics and Cybernetics of Gorky University
Abstract: It is proven that a system of three autonomous differential equations with polynomials (of degree no lower than three) for right sides can have a knotted curve as its solution.
Received: 26.07.1971
English version:
Mathematical Notes, 1972, Volume 11, Issue 6, Pages 393–395
DOI: https://doi.org/10.1007/BF01093724
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Kh. Ganiev, “On algebraic differential equations with knotted trajectories”, Mat. Zametki, 11:6 (1972), 645–650; Math. Notes, 11:6 (1972), 393–395
Citation in format AMSBIB
\Bibitem{Gan72}
\by Kh.~Ganiev
\paper On algebraic differential equations with knotted trajectories
\jour Mat. Zametki
\yr 1972
\vol 11
\issue 6
\pages 645--650
\mathnet{http://mi.mathnet.ru/mzm9832}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=301299}
\zmath{https://zbmath.org/?q=an:0267.34028|0247.34030}
\transl
\jour Math. Notes
\yr 1972
\vol 11
\issue 6
\pages 393--395
\crossref{https://doi.org/10.1007/BF01093724}
Linking options:
  • https://www.mathnet.ru/eng/mzm9832
  • https://www.mathnet.ru/eng/mzm/v11/i6/p645
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024