Abstract:
The theorem of Steinitz on the form of the set of points which are sums of convergent rearrangements of a given series is extended to series ∑xk in the uniformly smooth Banach space X with modulus of smoothness ρ(t), satisfying the condition ∑ρ(||xk||)<∞.
Citation:
V. P. Fonf, “Conditionally convergent series in a uniformly smooth Banach space”, Mat. Zametki, 11:2 (1972), 209–214; Math. Notes, 11:2 (1972), 129–132
\Bibitem{Fon72}
\by V.~P.~Fonf
\paper Conditionally convergent series in a uniformly smooth Banach space
\jour Mat. Zametki
\yr 1972
\vol 11
\issue 2
\pages 209--214
\mathnet{http://mi.mathnet.ru/mzm9781}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=298394}
\zmath{https://zbmath.org/?q=an:0252.46029}
\transl
\jour Math. Notes
\yr 1972
\vol 11
\issue 2
\pages 129--132
\crossref{https://doi.org/10.1007/BF01097931}
Linking options:
https://www.mathnet.ru/eng/mzm9781
https://www.mathnet.ru/eng/mzm/v11/i2/p209
This publication is cited in the following 4 articles:
P. A. Borodin, K. S. Shklyaev, “Density of quantized approximations”, Russian Math. Surveys, 78:5 (2023), 797–851
P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104
Sh. Levental, V. S. Mandrekar, S. A. Chobanyan, “Towards Nikishin's Theorem on the Almost Sure Convergence of Rearrangements of Functional Series”, Funct. Anal. Appl., 45:1 (2011), 33–45
S. A. Chobanyan, “Structure of the set of sums of a conditionally convergent series in a normed space”, Math. USSR-Sb., 56:1 (1987), 49–62