Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1972, Volume 11, Issue 1, Pages 15–20 (Mi mzm9758)  

The group $F^2K(X)$ as a birational invariant of a surface

L. R. Gorodetskii

Moscow Lomonosov State University
Abstract: The birational invariance is proved of the group $F^2K(X)$, where $X$ is a smooth projective surface over a field.
Received: 04.12.1970
English version:
Mathematical Notes, 1972, Volume 11, Issue 1, Pages 12–15
DOI: https://doi.org/10.1007/BF01366909
Bibliographic databases:
Document Type: Article
UDC: 519.4
Language: Russian
Citation: L. R. Gorodetskii, “The group $F^2K(X)$ as a birational invariant of a surface”, Mat. Zametki, 11:1 (1972), 15–20; Math. Notes, 11:1 (1972), 12–15
Citation in format AMSBIB
\Bibitem{Gor72}
\by L.~R.~Gorodetskii
\paper The group $F^2K(X)$ as a birational invariant of a surface
\jour Mat. Zametki
\yr 1972
\vol 11
\issue 1
\pages 15--20
\mathnet{http://mi.mathnet.ru/mzm9758}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=301014}
\zmath{https://zbmath.org/?q=an:0237.14007|0233.14005}
\transl
\jour Math. Notes
\yr 1972
\vol 11
\issue 1
\pages 12--15
\crossref{https://doi.org/10.1007/BF01366909}
Linking options:
  • https://www.mathnet.ru/eng/mzm9758
  • https://www.mathnet.ru/eng/mzm/v11/i1/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024