Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 92, Issue 2, Pages 163–180
DOI: https://doi.org/10.4213/mzm9749
(Mi mzm9749)
 

This article is cited in 15 scientific papers (total in 15 papers)

Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators

J. Brüninga, V. V. Grushinbc, S. Yu. Dobrokhotovdc

a Humboldt University, Germany
b Moscow State Institute of Electronics and Mathematics
c Moscow Institute of Physics and Technology
d A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences
References:
Abstract: An example of Schrödinger and Klein–Gordon equations with fast oscillating coefficients is used to show that they can be averaged by an adiabatic approximation based on V. P. Maslov's operator method.
Keywords: Klein–Gordon equation, Schrödinger equation, adiabatic approximation, asymptotic solution, pseudodifferential operator, adiabatic principle, perturbation theory.
Received: 28.12.2011
English version:
Mathematical Notes, 2012, Volume 92, Issue 2, Pages 151–165
DOI: https://doi.org/10.1134/S0001434612070188
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: J. Brüning, V. V. Grushin, S. Yu. Dobrokhotov, “Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators”, Mat. Zametki, 92:2 (2012), 163–180; Math. Notes, 92:2 (2012), 151–165
Citation in format AMSBIB
\Bibitem{BruGruDob12}
\by J.~Br\"uning, V.~V.~Grushin, S.~Yu.~Dobrokhotov
\paper Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators
\jour Mat. Zametki
\yr 2012
\vol 92
\issue 2
\pages 163--180
\mathnet{http://mi.mathnet.ru/mzm9749}
\crossref{https://doi.org/10.4213/mzm9749}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201553}
\zmath{https://zbmath.org/?q=an:06138373}
\elib{https://elibrary.ru/item.asp?id=20731579}
\transl
\jour Math. Notes
\yr 2012
\vol 92
\issue 2
\pages 151--165
\crossref{https://doi.org/10.1134/S0001434612070188}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000308042500018}
\elib{https://elibrary.ru/item.asp?id=20473551}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84865742588}
Linking options:
  • https://www.mathnet.ru/eng/mzm9749
  • https://doi.org/10.4213/mzm9749
  • https://www.mathnet.ru/eng/mzm/v92/i2/p163
  • This publication is cited in the following 15 articles:
    1. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Metod osredneniya dlya zadach o kvaziklassicheskikh asimptotikakh”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, SMFN, 70, no. 1, Rossiiskii universitet druzhby narodov, M., 2024, 53–76  mathnet  crossref
    2. S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Homogenization Method for Problems on Quasiclassical Asymptotics”, J Math Sci, 2024  crossref
    3. D. I. Borisov, “Homogenization of Operators with Perturbations of General Form in the Lower-Order Terms”, Math. Notes, 113:1 (2023), 138–142  mathnet  crossref  crossref  mathscinet
    4. S. Yu. Dobrokhotov, “Asymptotics of the Cauchy Problem for the One-Dimensional Schrödinger Equation with Rapidly Oscillating Initial Data and Small Addition to the Smooth Potential”, Russ. J. Math. Phys., 30:4 (2023), 466  crossref
    5. D.S. Minenkov, S.A. Sergeev, “Asymptotics of the Whispering Gallery-Type in the Eigenproblem for the Laplacian in a Domain of Revolution Diffeomorphic To a Solid Torus”, Russ. J. Math. Phys., 30:4 (2023), 599  crossref
    6. S. A. Sergeev, “Asymptotic Solution of the Cauchy Problem with Localized Initial Data for a Wave Equation with Small Dispersion Effects”, Diff Equat, 58:10 (2022), 1376  crossref
    7. S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “One Approach to the Computation of Asymptotics of Integrals of Rapidly Varying Functions”, Math. Notes, 103:5 (2018), 33–43  mathnet  crossref  crossref  mathscinet  isi  elib
    8. D. A. Karaeva, A. D. Karaev, V. E. Nazaikinskii, “Homogenization method in the problem of long wave propagation from a localized source in a basin over an uneven bottom”, Differ. Equ., 54:8 (2018), 1057–1072  crossref  crossref  mathscinet  isi  elib  elib  scopus
    9. Dobrokhotov S.Yu. Nazaikinskii V.E., “Asymptotic Localized Solutions of the Shallow Water Equations Over a Nonuniform Bottom”, AIP Conference Proceedings, 2048, ed. Pasheva V. Popivanov N. Venkov G., Amer Inst Physics, 2018, 040026  crossref  isi  scopus
    10. Dobrokhotov S.Yu., Grushin V.V., Sergeev S.A., Tirozzi B., “Asymptotic theory of linear water waves in a domain with nonuniform bottom with rapidly oscillating sections”, Russ. J. Math. Phys., 23:4 (2016), 455–474  crossref  mathscinet  zmath  isi  elib  scopus
    11. Dobrokhotov S.Yu., Nazaikinskii V.E., Tirozzi B., “on a Homogenization Method For Differential Operators With Oscillating Coefficients”, Dokl. Math., 91:2 (2015), 227–231  crossref  mathscinet  zmath  isi  elib
    12. V. V. Grushin, S. Yu. Dobrokhotov, “Homogenization in the Problem of Long Water Waves over a Bottom Site with Fast Oscillations”, Math. Notes, 95:3 (2014), 324–337  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    13. V. V. Grushin, S. Yu. Dobrokhotov, S. A. Sergeev, “Homogenization and dispersion effects in the problem of propagation of waves generated by a localized source”, Proc. Steklov Inst. Math., 281 (2013), 161–178  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    14. Dobrokhotov S.Yu., Sergeev S.A., Tirozzi B., “Asymptotic Solutions of the Cauchy Problem with Localized Initial Conditions for Linearized Two-Dimensional Boussinesq-Type Equations with Variable Coefficients”, Russ. J. Math. Phys., 20:2 (2013), 155–171  crossref  mathscinet  zmath  isi  elib
    15. Brüning J., Grushin V.V., Dobrokhotov S.Yu., “Approximate formulas for eigenvalues of the Laplace operator on a torus arising in linear problems with oscillating coefficients”, Russ. J. Math. Phys., 19:3 (2012), 261–272  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:892
    Full-text PDF :276
    References:130
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025