Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1971, Volume 10, Issue 6, Pages 679–688 (Mi mzm9747)  

This article is cited in 8 scientific papers (total in 8 papers)

On the structure of finite commutative rings with an identity

A. A. Nechaev
Abstract: We describe the structure of the finite primary rings of principal ideals; we prove that every such ring is the factor-ring of the ring of integers of a finite extension of the field of rational p-adic numbers; we touch on the problem of the number of nonisomorphic rings of this type with a fixed number of elements.
Received: 31.08.1970
English version:
Mathematical Notes, 1971, Volume 10, Issue 6, Pages 840–845
DOI: https://doi.org/10.1007/BF01146443
Bibliographic databases:
Document Type: Article
UDC: 512.8
Language: Russian
Citation: A. A. Nechaev, “On the structure of finite commutative rings with an identity”, Mat. Zametki, 10:6 (1971), 679–688; Math. Notes, 10:6 (1971), 840–845
Citation in format AMSBIB
\Bibitem{Nec71}
\by A.~A.~Nechaev
\paper On the structure of finite commutative rings with an identity
\jour Mat. Zametki
\yr 1971
\vol 10
\issue 6
\pages 679--688
\mathnet{http://mi.mathnet.ru/mzm9747}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=291153}
\zmath{https://zbmath.org/?q=an:0237.12014}
\transl
\jour Math. Notes
\yr 1971
\vol 10
\issue 6
\pages 840--845
\crossref{https://doi.org/10.1007/BF01146443}
Linking options:
  • https://www.mathnet.ru/eng/mzm9747
  • https://www.mathnet.ru/eng/mzm/v10/i6/p679
  • This publication is cited in the following 8 articles:
    1. O. A. Kozlitin, “Periodicheskie svoistva mnogomernykh polinomialnykh preobrazovanii nad koltsom Galua – Eizenshteina”, Matem. vopr. kriptogr., 13:1 (2022), 69–99  mathnet  crossref  mathscinet
    2. O. A. Kozlitin, “Estimate of the maximal cycle length in the graph of polynomial transformation of Galois–Eisenstein ring”, Discrete Math. Appl., 28:6 (2018), 345–358  mathnet  crossref  crossref  isi  elib
    3. A. A. Nechaev, V. N. Tsypyschev, “Artinian bimodule with quasi-Frobenius bimodule of translations”, Discrete Math. Appl., 29:2 (2019), 103–119  mathnet  mathnet  crossref  crossref  isi
    4. A. V. Abornev, “Recursively-generated permutations of a binary space”, Matem. vopr. kriptogr., 5:2 (2014), 7–20  mathnet  crossref
    5. V. L. Kurakin, “Similarity invariants for matrices over a commutative Artinian chain ring”, Math. Notes, 80:3 (2006), 387–395  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. D. A. Mikhailov, A. A. Nechaev, “Solving systems of polynomial equations over Galois–Eisenstein rings with the use of the canonical generating systems of polynomial ideals”, Discrete Math. Appl., 14:1 (2004), 41–73  mathnet  crossref  crossref  mathscinet  zmath
    7. T. G. Gazaryan, “An example of non-isomorphic commutative chain rings”, Russian Math. Surveys, 47:3 (1992), 174–175  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. A. A. Nechaev, “Finite principal ideal rings”, Math. USSR-Sb., 20:3 (1973), 364–382  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:747
    Full-text PDF :181
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025