Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1971, Volume 10, Issue 6, Pages 659–670 (Mi mzm9745)  

This article is cited in 8 scientific papers (total in 8 papers)

Simplexes of $L$-subdivisions of Euclidean spaces

E. P. Baranovskii

Institute of Education, Ivanovo
Abstract: It is shown that necessary and sufficient conditions for a basic simplex of a point lattice in $E^n$ space to be an $L$-simplex are equivalent to conditions imposed on the coefficients $a_{ij}$ of the form $\sum_{i,j=1}^na_{ij}x_ix_j-\sum_{i=1}^na_{ii}x_i$, namely, that it should assume positive values for all possible integer values of the variables $x_1,\dots,x_n$ (excluding the obvious $n+1$ cases when the form is equal to 0). These conditions are obtained for $n\leqslant5$.
Received: 09.09.1970
English version:
Mathematical Notes, 1971, Volume 10, Issue 6, Pages 827–834
DOI: https://doi.org/10.1007/BF01146441
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. P. Baranovskii, “Simplexes of $L$-subdivisions of Euclidean spaces”, Mat. Zametki, 10:6 (1971), 659–670; Math. Notes, 10:6 (1971), 827–834
Citation in format AMSBIB
\Bibitem{Bar71}
\by E.~P.~Baranovskii
\paper Simplexes of $L$-subdivisions of Euclidean spaces
\jour Mat. Zametki
\yr 1971
\vol 10
\issue 6
\pages 659--670
\mathnet{http://mi.mathnet.ru/mzm9745}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=291088}
\zmath{https://zbmath.org/?q=an:0231.50003}
\transl
\jour Math. Notes
\yr 1971
\vol 10
\issue 6
\pages 827--834
\crossref{https://doi.org/10.1007/BF01146441}
Linking options:
  • https://www.mathnet.ru/eng/mzm9745
  • https://www.mathnet.ru/eng/mzm/v10/i6/p659
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024