|
This article is cited in 1 scientific paper (total in 1 paper)
Some continuous decompositions of the space $E^n$
Van Ny Kyong V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR
Abstract:
The main result proved is the following. Let $E_f^{(n)}$ ($n>1$) be a continuous decomposition of $E^{(n)}$ into points and zero-dimensional compact sets $\xi_\lambda$. If $P^*=\bigcup\limits_\lambda\xi_\lambda$ is compact and $\mathrm{dim}\,f(P^*)=0$, then the space $f(E^n)$ can be imbedded in $E^{(n+1)}$.
Received: 24.06.1970
Citation:
Van Ny Kyong, “Some continuous decompositions of the space $E^n$”, Mat. Zametki, 10:3 (1971), 315–326; Math. Notes, 10:3 (1971), 612–618
Linking options:
https://www.mathnet.ru/eng/mzm9719 https://www.mathnet.ru/eng/mzm/v10/i3/p315
|
Statistics & downloads: |
Abstract page: | 138 | Full-text PDF : | 53 | First page: | 1 |
|