Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1971, Volume 10, Issue 3, Pages 315–326 (Mi mzm9719)  

This article is cited in 1 scientific paper (total in 1 paper)

Some continuous decompositions of the space $E^n$

Van Ny Kyong

V. A. Steklov Mathematics Institute, Academy of Sciences of the USSR
Abstract: The main result proved is the following. Let $E_f^{(n)}$ ($n>1$) be a continuous decomposition of $E^{(n)}$ into points and zero-dimensional compact sets $\xi_\lambda$. If $P^*=\bigcup\limits_\lambda\xi_\lambda$ is compact and $\mathrm{dim}\,f(P^*)=0$, then the space $f(E^n)$ can be imbedded in $E^{(n+1)}$.
Received: 24.06.1970
English version:
Mathematical Notes, 1971, Volume 10, Issue 3, Pages 612–618
DOI: https://doi.org/10.1007/BF01464723
Bibliographic databases:
Document Type: Article
UDC: 513.83
Language: Russian
Citation: Van Ny Kyong, “Some continuous decompositions of the space $E^n$”, Mat. Zametki, 10:3 (1971), 315–326; Math. Notes, 10:3 (1971), 612–618
Citation in format AMSBIB
\Bibitem{Van71}
\by Van~Ny~Kyong
\paper Some continuous decompositions of the space~$E^n$
\jour Mat. Zametki
\yr 1971
\vol 10
\issue 3
\pages 315--326
\mathnet{http://mi.mathnet.ru/mzm9719}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=288743}
\zmath{https://zbmath.org/?q=an:0226.57004}
\transl
\jour Math. Notes
\yr 1971
\vol 10
\issue 3
\pages 612--618
\crossref{https://doi.org/10.1007/BF01464723}
Linking options:
  • https://www.mathnet.ru/eng/mzm9719
  • https://www.mathnet.ru/eng/mzm/v10/i3/p315
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024