Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 1, Pages 52–63
DOI: https://doi.org/10.4213/mzm9694
(Mi mzm9694)
 

$\varphi$-Strong Approximation of Functions by Trigonometric Polynomials

R. A. Lasuriya

Abkhazian State University
References:
Abstract: The rate of $\varphi$-strong approximation of periodic functions by trigonometric polynomials constructed on the basis of interpolating polynomials with equidistant nodes is considered.
Keywords: Fourier–Lagrange series, group of deviations, best approximation, Dirichlet kernel.
Received: 02.11.2016
English version:
Mathematical Notes, 2017, Volume 102, Issue 1, Pages 43–52
DOI: https://doi.org/10.1134/S0001434617070057
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: R. A. Lasuriya, “$\varphi$-Strong Approximation of Functions by Trigonometric Polynomials”, Mat. Zametki, 102:1 (2017), 52–63; Math. Notes, 102:1 (2017), 43–52
Citation in format AMSBIB
\Bibitem{Las17}
\by R.~A.~Lasuriya
\paper $\varphi$-Strong Approximation of Functions by Trigonometric Polynomials
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 1
\pages 52--63
\mathnet{http://mi.mathnet.ru/mzm9694}
\crossref{https://doi.org/10.4213/mzm9694}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3670209}
\elib{https://elibrary.ru/item.asp?id=29437447}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 1
\pages 43--52
\crossref{https://doi.org/10.1134/S0001434617070057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413842800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032389730}
Linking options:
  • https://www.mathnet.ru/eng/mzm9694
  • https://doi.org/10.4213/mzm9694
  • https://www.mathnet.ru/eng/mzm/v102/i1/p52
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :55
    References:65
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024