Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 4, Pages 548–566
DOI: https://doi.org/10.4213/mzm9688
(Mi mzm9688)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the Continuous Linear Right Inverse for Convolution Operators in Spaces of Ultradifferentiable Functions

D. A. Polyakovaab

a Southern Federal University, Rostov-on-Don
b South Mathematical Institute of VSC RAS
Full-text PDF (568 kB) Citations (5)
References:
Abstract: A surjective convolution operator is considered in spaces of complex-valued Beurling ultradifferentiable functions of normal type on a finite interval. A complete description of characteristic functions for which this operator has a continuous linear right inverse is obtained. The finite- and infinite-order differential operators with constant coefficients are studied as a special case.
Keywords: convolution operator, continuous linear right inverse (CLRI), Beurling ultradifferentiable function.
Received: 20.11.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 4, Pages 522–537
DOI: https://doi.org/10.1134/S0001434614090272
Bibliographic databases:
Document Type: Article
UDC: 517.983
Language: Russian
Citation: D. A. Polyakova, “On the Continuous Linear Right Inverse for Convolution Operators in Spaces of Ultradifferentiable Functions”, Mat. Zametki, 96:4 (2014), 548–566; Math. Notes, 96:4 (2014), 522–537
Citation in format AMSBIB
\Bibitem{Pol14}
\by D.~A.~Polyakova
\paper On the Continuous Linear Right Inverse for Convolution Operators in Spaces of Ultradifferentiable Functions
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 4
\pages 548--566
\mathnet{http://mi.mathnet.ru/mzm9688}
\crossref{https://doi.org/10.4213/mzm9688}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344331}
\zmath{https://zbmath.org/?q=an:06435018}
\elib{https://elibrary.ru/item.asp?id=22834420}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 4
\pages 522--537
\crossref{https://doi.org/10.1134/S0001434614090272}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344334500027}
\elib{https://elibrary.ru/item.asp?id=24945931}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920929835}
Linking options:
  • https://www.mathnet.ru/eng/mzm9688
  • https://doi.org/10.4213/mzm9688
  • https://www.mathnet.ru/eng/mzm/v96/i4/p548
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :187
    References:85
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024