|
Matematicheskie Zametki, 1971, Volume 9, Issue 3, Pages 263–273
(Mi mzm9666)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Number of nonisomorphic subgraphs in an $n$-point graph
A. D. Korshunov Mathematics Institute, Siberian Division, Academy of Sciences of the USSR
Abstract:
Let $\mathfrak{G}(n)$ be the set of all nonoriented graphs with $n$ enumerated points without loops or multiple lines, and let $\nu_k(G)$ be the number of mutually nonisomorphic $k$-point subgraphs of $G\in\mathfrak{G}(n)$. It is proved that at least $|\mathfrak{G}(n)|(1-1/n)$ graphs $G\in\mathfrak{G}(n)$ possess the following properties: a) for any $k\in[6\log_2n, cn+5\log_2n]$, where $c=-c\log_2c-(1-c)\times\log_2(1-c)$ and $c>1/2$, we have $\nu_k(G)>C_n^k(1-1/n^2)$; b) for any $k\in[cn+5\log_2n, n]$ we have $\nu_k(G)=C_n^k$. Hence “almost all” graphs $G\in\mathfrak{G}(n)$ contain $\nu(G)\sim2^n$ pairwise nonisomorphic subgraphs.
Received: 18.03.1970
Citation:
A. D. Korshunov, “Number of nonisomorphic subgraphs in an $n$-point graph”, Mat. Zametki, 9:3 (1971), 263–273; Math. Notes, 9:3 (1971), 155–160
Linking options:
https://www.mathnet.ru/eng/mzm9666 https://www.mathnet.ru/eng/mzm/v9/i3/p263
|
Statistics & downloads: |
Abstract page: | 379 | Full-text PDF : | 107 | First page: | 1 |
|