Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1971, Volume 9, Issue 2, Pages 193–198 (Mi mzm9658)  

Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space

D. D. Sokolov

M. V. Lomonosov Moscow State University
Abstract: It is proved that every pseudo-Riemannian manifold $M^n_{(p,q)}$ with the $C^k$ metric ($3\leqslant k\leqslant\infty$) has an isometric $C^k$ imbedding in the large in $E_{(p',q')}^{n(n+1)(3n+11)/2}$, $p'\geqslant(n+1)^2$, $q'\geqslant(n+1)^2$.
Received: 24.11.1969
English version:
Mathematical Notes, 1971, Volume 9, Issue 2, Pages 113–116
DOI: https://doi.org/10.1007/BF01316990
Bibliographic databases:
Document Type: Article
UDC: 513.78
Language: Russian
Citation: D. D. Sokolov, “Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space”, Mat. Zametki, 9:2 (1971), 193–198; Math. Notes, 9:2 (1971), 113–116
Citation in format AMSBIB
\Bibitem{Sok71}
\by D.~D.~Sokolov
\paper Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space
\jour Mat. Zametki
\yr 1971
\vol 9
\issue 2
\pages 193--198
\mathnet{http://mi.mathnet.ru/mzm9658}
\zmath{https://zbmath.org/?q=an:0223.53053|0214.20401}
\transl
\jour Math. Notes
\yr 1971
\vol 9
\issue 2
\pages 113--116
\crossref{https://doi.org/10.1007/BF01316990}
Linking options:
  • https://www.mathnet.ru/eng/mzm9658
  • https://www.mathnet.ru/eng/mzm/v9/i2/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024