|
Matematicheskie Zametki, 1971, Volume 9, Issue 2, Pages 193–198
(Mi mzm9658)
|
|
|
|
Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space
D. D. Sokolov M. V. Lomonosov Moscow State University
Abstract:
It is proved that every pseudo-Riemannian manifold $M^n_{(p,q)}$ with the $C^k$ metric ($3\leqslant k\leqslant\infty$) has an isometric $C^k$ imbedding in the large in $E_{(p',q')}^{n(n+1)(3n+11)/2}$, $p'\geqslant(n+1)^2$, $q'\geqslant(n+1)^2$.
Received: 24.11.1969
Citation:
D. D. Sokolov, “Imbedding of pseudo-Riemannian manifolds in a pseudo-euclidean space”, Mat. Zametki, 9:2 (1971), 193–198; Math. Notes, 9:2 (1971), 113–116
Linking options:
https://www.mathnet.ru/eng/mzm9658 https://www.mathnet.ru/eng/mzm/v9/i2/p193
|
Statistics & downloads: |
Abstract page: | 205 | Full-text PDF : | 73 | First page: | 1 |
|