Abstract:
A result is proved concerning the existence of periodic solutions of a system with delay; this theorem is new for ordinary differential equations. An integral operator is constructed, acting in the space of continuous functions, whose fixed points are periodic solutions of the system under consideration.
Citation:
V. V. Strygin, “A theorem concerning the existence of periodic solutions of systems of differential equations with delayed arguments”, Mat. Zametki, 8:2 (1970), 229–234; Math. Notes, 8:2 (1970), 600–602
\Bibitem{Str70}
\by V.~V.~Strygin
\paper A theorem concerning the existence of periodic solutions of systems of differential equations with delayed arguments
\jour Mat. Zametki
\yr 1970
\vol 8
\issue 2
\pages 229--234
\mathnet{http://mi.mathnet.ru/mzm9599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=276583}
\zmath{https://zbmath.org/?q=an:0215.15404|0224.34058}
\transl
\jour Math. Notes
\yr 1970
\vol 8
\issue 2
\pages 600--602
\crossref{https://doi.org/10.1007/BF01093407}
Linking options:
https://www.mathnet.ru/eng/mzm9599
https://www.mathnet.ru/eng/mzm/v8/i2/p229
This publication is cited in the following 4 articles:
Kamenskii M.I., Mikhailenko B.A., “Printsip usredneniya i variatsionnyi podkhod v zadache o bifurkatsii periodicheskikh reshenii iz neizolirovannykh polozhenii ravnovesiya usrednennogo uravneniya”, Differentsialnye uravneniya, 48:3 (2012), 326–326
V. B. Levenshtam, G. L. Khatlamadzhiyan, “Extension of averaging theory to differential equations containing rapidly oscillating terms with large amplitudes. The problem of periodic solutions”, Russian Math. (Iz. VUZ), 50:6 (2006), 33–45
Jean Mawhin, International Conference on Differential Equations, 1975, 537
G.B Gustafson, Klaus Schmitt, “Periodic solutions of hereditary differential systems”, Journal of Differential Equations, 13:3 (1973), 567