|
Matematicheskie Zametki, 1970, Volume 8, Issue 2, Pages 149–158
(Mi mzm9591)
|
|
|
|
A class of functions of a real variable
Yu. I. Alimov Academy of Sciences of the USSR, Ural Branch
Abstract:
An investigation of measurable almost-everywhere finite functions
$\xi(t)$, $-\infty<t<+\infty$, for which
$$
\varphi_T^\xi(\tau_{(n)},\lambda_{(n)})=\frac1{2T}\int_{-T}^T\exp{i}\sum_{k=1}^n\lambda_k\xi(t-\tau_k)dt
$$
tends to an asymptotic characteristic function $\varphi_\infty^\xi(\tau_{(n)},\lambda_{(n)})$
when $T\to\infty$. Here $n$ is any positive integer and $\tau_{(n)}=(\tau_1,\tau_2,\dots,\tau_n)$ is arbitrary.
It is proved that the class of such functions $\xi(t)$ is larger than the class of Besicovich almost-periodic functions.
Received: 09.09.1968
Citation:
Yu. I. Alimov, “A class of functions of a real variable”, Mat. Zametki, 8:2 (1970), 149–158; Math. Notes, 8:2 (1970), 558–563
Linking options:
https://www.mathnet.ru/eng/mzm9591 https://www.mathnet.ru/eng/mzm/v8/i2/p149
|
Statistics & downloads: |
Abstract page: | 161 | Full-text PDF : | 83 | First page: | 1 |
|