|
Matematicheskie Zametki, 1970, Volume 8, Issue 1, Pages 121–127
(Mi mzm9588)
|
|
|
|
$P$-separation of variables in Laplace's equation
I. I. Tugov P. N. Lebedev Physics Institute, Academy of Sciences of the USSR
Abstract:
The $P$-separation of variables in Laplace's equation $\Delta_2u=0$ in flat $n$-dimensional
space $S_n$ is proved to be equivalent to the complete separation of variables in
the invariant Laplace equation
$$
\Delta u\equiv \left\{\Delta_2+\frac{n-2}{4(n-1)}R\right\}u=0,
$$
in a space $V_n$ of constant curvature $K\ne0$ ($\Delta$ is the invariant Laplacian,
and $R$ is the scalar curvature, all in $V_n$).
Received: 21.07.1967
Citation:
I. I. Tugov, “$P$-separation of variables in Laplace's equation”, Mat. Zametki, 8:1 (1970), 121–127; Math. Notes, 8:1 (1970), 538–541
Linking options:
https://www.mathnet.ru/eng/mzm9588 https://www.mathnet.ru/eng/mzm/v8/i1/p121
|
Statistics & downloads: |
Abstract page: | 134 | Full-text PDF : | 74 | First page: | 1 |
|