|
Matematicheskie Zametki, 1970, Volume 7, Issue 4, Pages 443–447
(Mi mzm9527)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
On the maximal dual pairs of invariant subspaces of $J$-self-adjoint operators
H. Langer Dresden Technical University
Abstract:
In the $J$-spaces $\mathfrak{H}=\mathfrak{H}_1\oplus\mathfrak{H}_2$, with the infinite-dimensional components $\mathfrak{H}_k=P_k\mathfrak{H}$ ($k=1,2$), we can always find an operator $A$, for which there are at least two distinct invariant maximal dual pairs, such that if $[x,x]=0$ and $[Ax,x]=0$, then $x=0$.
Received: 17.03.1969
Citation:
H. Langer, “On the maximal dual pairs of invariant subspaces of $J$-self-adjoint operators”, Mat. Zametki, 7:4 (1970), 443–447; Math. Notes, 7:4 (1970), 269–271
Linking options:
https://www.mathnet.ru/eng/mzm9527 https://www.mathnet.ru/eng/mzm/v7/i4/p443
|
|