Abstract:
A class Pn of even positive trigonometric polynomials tn(φ)=a0+a1cosφ+⋯+ancosnφ,
satisfying the conditions: ak⩾0 (k=0,1,…,n), a0<a1 is considered.
The behavior of the sequence of functionals
Vn=inftn∈Pntn(0)−a0(√a1−√a0)2,
is studied; two-sided estimations are given for Vn and V∞=limn→∞Vn.
This publication is cited in the following 5 articles:
V. I. Danchenko, D. G. Chkalova, “Bernstein-type estimates for the derivatives of trigonometric polynomials”, Probl. anal. Issues Anal., 10(28):3 (2021), 31–40
D. G. Vasilchenkova, V. I. Danchenko, “Extraction of harmonics from trigonometric polynomials by phase-amplitude operators”, St. Petersburg Math. J., 32:2 (2021), 215–232
D. G. Vasilchenkova, V. I. Danchenko, “Extraction of Several Harmonics from Trigonometric Polynomials. Fejér-Type Inequalities”, Proc. Steklov Inst. Math., 308 (2020), 92–106
M. R. Gabdullin, S. V. Konyagin, “O rabotakh S. B. Stechkina po teorii chisel”, Chebyshevskii sb., 21:4 (2020), 9–18
O. V. Besov, V. M. Buchstaber, A. G. Vitushkin, A. A. Gonchar, S. V. Konyagin, L. D. Kudryavtsev, S. M. Nikol'skii, S. P. Novikov, Yu. S. Osipov, A. Yu. Popov, V. A. Sadovnichii, A. F. Sidorov, Yu. N. Subbotin, S. A. Telyakovskii, P. L. Ul'yanov, N. I. Chernykh, “Sergei Borisovich Stechkin (obituary)”, Russian Math. Surveys, 51:6 (1996), 1007–1014