|
Matematicheskie Zametki, 1970, Volume 7, Issue 4, Pages 411–422
(Mi mzm9524)
|
|
|
|
This article is cited in 4 scientific papers (total in 5 papers)
Some extremal properties of positive trigonometric polynomials
S. B. Stechkin V. A. Steklov Mathematical Institute, Academy of Sciences of the USSR
Abstract:
A class $P_n$ of even positive trigonometric polynomials $t_n(\varphi)=a_0+a_1\cos\varphi+\dots+a_n\cos n\varphi$,
satisfying the conditions: $a_k\geqslant0$ ($k=0,1,\dots,n$), $a_0<a_1$ is considered.
The behavior of the sequence of functionals
$$
V_n=\inf_{t_n\in P_n}\frac{t_n(0)-a_0}{(\sqrt{a_1}-\sqrt{a_0})^2},
$$
is studied; two-sided estimations are given for $V_n$ and $V_\infty=\lim\limits_{n\to\infty}V_n$.
Received: 20.11.1969
Citation:
S. B. Stechkin, “Some extremal properties of positive trigonometric polynomials”, Mat. Zametki, 7:4 (1970), 411–422; Math. Notes, 7:4 (1970), 248–255
Linking options:
https://www.mathnet.ru/eng/mzm9524 https://www.mathnet.ru/eng/mzm/v7/i4/p411
|
|