Abstract:
The Kullback–Leibler information I[Q∣P]I[Q∣P] for discrimination in favor of the probability distribution Q against P is considered as a nonsymmetrical analog of one half of the square of the distance between the “points” Q and P. For the n-dimensional “planes” we take the exponential families. We shall prove a nonsymmetrical analogue of the theorem of Pythagoras in the formulation: “The squared length of an oblique line equals the sum of the squared lengths of the perpendicular and the projection of the oblique line,” and also an analog of the cosine theorem and the like.
Citation:
N. N. Chentsov, “Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras”, Mat. Zametki, 4:3 (1968), 323–332; Math. Notes, 4:3 (1968), 686–691
\Bibitem{Che68}
\by N.~N.~Chentsov
\paper Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras
\jour Mat. Zametki
\yr 1968
\vol 4
\issue 3
\pages 323--332
\mathnet{http://mi.mathnet.ru/mzm9452}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=239631}
\zmath{https://zbmath.org/?q=an:0169.50901}
\transl
\jour Math. Notes
\yr 1968
\vol 4
\issue 3
\pages 686--691
\crossref{https://doi.org/10.1007/BF01116448}
Linking options:
https://www.mathnet.ru/eng/mzm9452
https://www.mathnet.ru/eng/mzm/v4/i3/p323
This publication is cited in the following 8 articles:
Hiroshi Matsuzoe, “Half a century of information geometry, part 1”, Info. Geo., 7:S1 (2024), 3
Wael Alghamdi, Shahab Asoodeh, Hao Wang, Flavio P. Calmon, Dennis Wei, Karthikeyan Natesan Ramamurthy, 2020 IEEE International Symposium on Information Theory (ISIT), 2020, 2711
V. V. Vedenyapin, S. Z. Adzhiev, V. V. Kazantseva, “Entropiya po Boltsmanu i Puankare, ekstremali Boltsmana i metod Gamiltona–Yakobi v negamiltonovoi situatsii”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 37–59
M. Kovačević, I. Stanojević, V. Šenk, “Information-geometric equivalence of transportation polytopes”, Problems Inform. Transmission, 51:2 (2015), 103–109
Belavkin R.V., “Asymmetric Topologies on Statistical Manifolds”, Geometric Science of Information, Lecture Notes in Computer Science, 9389, ed. Nielsen F. Barbaresco F., Springer Int Publishing Ag, 2015, 203–210
V. V. Vedenyapin, S. Z. Adzhiev, “Entropy in the sense of Boltzmann and Poincaré”, Russian Math. Surveys, 69:6 (2014), 995–1029
S. Z. Adzhiev, V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model”, Comput. Math. Math. Phys., 51:11 (2011), 1942–1952