Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1968, Volume 4, Issue 3, Pages 323–332 (Mi mzm9452)  

This article is cited in 8 scientific papers (total in 8 papers)

Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras

N. N. Chentsov

Institute of Applied Mathematics, Academy of Sciences of the USSR
Abstract: The Kullback–Leibler information I[QP]I[QP] for discrimination in favor of the probability distribution Q against P is considered as a nonsymmetrical analog of one half of the square of the distance between the “points” Q and P. For the n-dimensional “planes” we take the exponential families. We shall prove a nonsymmetrical analogue of the theorem of Pythagoras in the formulation: “The squared length of an oblique line equals the sum of the squared lengths of the perpendicular and the projection of the oblique line,” and also an analog of the cosine theorem and the like.
Received: 15.02.1968
English version:
Mathematical Notes, 1968, Volume 4, Issue 3, Pages 686–691
DOI: https://doi.org/10.1007/BF01116448
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: N. N. Chentsov, “Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras”, Mat. Zametki, 4:3 (1968), 323–332; Math. Notes, 4:3 (1968), 686–691
Citation in format AMSBIB
\Bibitem{Che68}
\by N.~N.~Chentsov
\paper Nonsymmetrical distance between probability distributions, entropy and the theorem of Pythagoras
\jour Mat. Zametki
\yr 1968
\vol 4
\issue 3
\pages 323--332
\mathnet{http://mi.mathnet.ru/mzm9452}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=239631}
\zmath{https://zbmath.org/?q=an:0169.50901}
\transl
\jour Math. Notes
\yr 1968
\vol 4
\issue 3
\pages 686--691
\crossref{https://doi.org/10.1007/BF01116448}
Linking options:
  • https://www.mathnet.ru/eng/mzm9452
  • https://www.mathnet.ru/eng/mzm/v4/i3/p323
  • This publication is cited in the following 8 articles:
    1. Hiroshi Matsuzoe, “Half a century of information geometry, part 1”, Info. Geo., 7:S1 (2024), 3  crossref
    2. Wael Alghamdi, Shahab Asoodeh, Hao Wang, Flavio P. Calmon, Dennis Wei, Karthikeyan Natesan Ramamurthy, 2020 IEEE International Symposium on Information Theory (ISIT), 2020, 2711  crossref
    3. V. V. Vedenyapin, S. Z. Adzhiev, V. V. Kazantseva, “Entropiya po Boltsmanu i Puankare, ekstremali Boltsmana i metod Gamiltona–Yakobi v negamiltonovoi situatsii”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 64, no. 1, Rossiiskii universitet druzhby narodov, M., 2018, 37–59  mathnet  crossref
    4. M. Kovačević, I. Stanojević, V. Šenk, “Information-geometric equivalence of transportation polytopes”, Problems Inform. Transmission, 51:2 (2015), 103–109  mathnet  crossref  mathscinet  isi
    5. Belavkin R.V., “Asymmetric Topologies on Statistical Manifolds”, Geometric Science of Information, Lecture Notes in Computer Science, 9389, ed. Nielsen F. Barbaresco F., Springer Int Publishing Ag, 2015, 203–210  crossref  mathscinet  zmath  isi  scopus
    6. V. V. Vedenyapin, S. Z. Adzhiev, “Entropy in the sense of Boltzmann and Poincaré”, Russian Math. Surveys, 69:6 (2014), 995–1029  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. S. Z. Adzhiev, V. V. Vedenyapin, “Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model”, Comput. Math. Math. Phys., 51:11 (2011), 1942–1952  mathnet  crossref  mathscinet  isi
    8. Theory Probab. Appl., 51:3 (2007), 415–426  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:510
    Full-text PDF :224
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025